Posts Tagged ‘cancer’

Human retroviruses and cancer

13 March, 2015

The very early discovery of avian viruses associated with cancer, and the subsequent failure for many years to isolate similar viruses from mammals, gave some researchers the idea that possibly birds were unique in this regard.  However, “RNA tumour viruses” or oncornaviruses, as they were known for a time, were first demonstrated to affect mammals when mouse mammary tumours were shown to be due to a virus by John Bittner in 1936, by transmission in milk. He also demonstrated vertical transmission, or inheritance of the virus. 

The nature of the agent was not known at the time, but by 1951 L Gross had shown that leukaemia could be passaged in mice using cell-free extracts.  In 1958 W Bernhard had proposed a classification of what were to become known as retroviruses on the basis of electron microscopy.  In 1964 a mouse sarcoma virus and a feline leukaemia virus had been isolated, and in 1969 bovine leukaemia was shown to be a viral disease.  1970 saw the description of reverse transcriptase from retroviruses, and in 1971 the first primate leukaemia virus – from gibbons – was described, and the first retrovirus (foamy virus) described from humans.  Bovine leukaemia virus was characterised as a retrovirus in 1976.

It is not surprising, therefore, that many labs tried to find cancer-causing disease agents in humans.  However, such effort had been put into finding oncornaviruses associated with human tumours, with such lack of success, that it led to people talking of “human rumour viruses” – a useful list of which can be seen here.  Nevertheless, by 1980 Robert Gallo’s group had succeeded in findingtype C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma”, which they called human T-cell leukaemia virus (HTLV).  The breakthrough was made possible by their prior discovery of “T cell growth factor”, now called interleukin 2 (IL-2), which meant human T cells could be successfully cultured for the first time.  A group of Japanese researchers described an “Adult T cell leukemia virus” (ATLV) in 1982: this proved to be the same as what became HTLV-1, given the description also in 1982 by Gallo’s group of another retrovirus associated with a T-cell variant of hairy cell leukaemia, which they dubbed HTLV-2. 

HTLV-1 is associated with the rare and genetically-linked adult T-cell leukaemia, found mainly in southern Japan, as well as with a demyelinating disease called “HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP)” and HTLV-associated uveitis and infective dermatitis.  The areas of highest prevalence are Japan, Africa, the Caribbean islands and South America.  HTLV-2 had a mainly Amerindian and African pygmy distribution, although it is now found worldwide, and causes a milder form of HAM/TSP, as well as arthritis, bronchitis, and pneumonia.  It is is also frequent among injecting drug users.  However, except for rare incidences of cutaneous lymphoma in people coinfected with HIV, and the fact of its origin in a hairy cell leukaemia, there is no good evidence that HTLV-2 causes lymphoproliferative disease.  The two viruses infect between 15 and 20 million people worldwide.  HTLV-1 infections can lead to an often rapidly fatal leukaemia.

By 2005 another two viruses had joined the family: HTLV-3 and HTLV-4 were described from samples from Cameroon that were presumably zoonoses – being associated with bushmeat hunters – and which are not associated with disease.  Interestingly, all the HTLVs have simian counterparts – indicating species cross-over at some point in their evolution.   Collectively they are known as the primate T-lymphotropic viruses (PTLVs) as they consitute an evolutionarily related group.  Another relative is bovine leukaemia virus.

The HTLV-1/STLV-1 and HTLV-2/STLV-2 relationships are relatively ancient, at more than 20 000 years since divergence.  However, their evolution differs markedly in that STLV-I occurs in Africa and Asia among at least 19 species of Old World primates, while STLV-2 has only been found in bonobos, or  Pan paniscus dwarf chimpanzees from DR Congo.  It is therefore quite possible that there are other HTLVs undiscovered in primates in Africa and elsewhere, that may yet emerge into the human population.

Human immunodeficiency virus type 1 (HIV-1) was for a time after its discovery in 1983 called HTLV-III by the Gallo group and lymphadenopathy virus (LAV) by the Montagnier group; however, evidence later obtained from sequencing and genome organisation showed by 1986 that it was in fact a lentivirus, related to viruses such as feline immunodeficiency virus (FIV) and the equine infectious anaemia virus discovered in 1904, and it was renamed.  Francoise Barre-Sinoussie and Luc Montagnier were awarded a half share in a 2008 Nobel Prize, commemorated here

HIV particle.  Russell Kightley Media

HIV particle. Russell Kightley Media

in Viroblogy.

HIV is indirectly implicated in cancer because it creates an environment through immunosuppression that allows the development of opportunistic tumours that would normally be controlled by the immune system: these include HPV-related cervical cancer, and Kaposi’s sarcoma caused by Human herpesvirus 8 (see later).  It is also possible that HIV may directly cause lymphoma development in AIDS patients by insertional activation of cellular oncogenes, although this appears to be rare.

Back to Contents

Advertisements

Papillomaviruses and human cancer

11 March, 2015

Human warts in all their forms – cutaneous, verrucous and genital growths and lesions – have been known since antiquity, and it was known since at least 1823 that at least some were infectious. Experiments done with human volunteers in the 1890s confirmed this, when it was shown that transplanting wart tissue resulted in typical disease.  As early as 1908, it was shown by a G Ciuffo that “verrucae volgare” – common warts – could be transmitted via a cell-free filtrate.  However, it was Richard E Shope who first showed that a papillomavirus was associated with animal tumours.  A useful review from 1931 on “Infectious oral papillomatosis of dogs” by DeMonbreun and the Ernest Goodpasture of egg culture fame covers the early history of the investigation of human disease as well as of animal papillomas very well, so we will not cover this further.

In light of later findings of the involvement of papillomaviruses, it was a prescient although premature observation by an Italian physician named Rigatoni-Stern in 1842 that cervical cancer appeared to be sexually transmitted, given that it occurred in married women, widows and prostitutes, but rarely in virgins and nuns.

Although papillomaviruses had been implicated as the first viruses known to cause a cancer in mammals as early as the 1930s, and the structurally very similar papovaviruses were similarly implicated in the late 1950s, it was only in 1972 that  Stefania Jabłońska proposed that a human papillomavirus (HPV; then called a papovavirus) was involved with the rare hereditary skin cancer called epidermodysplasia verruciformis.   

Meanwhile Harald zur Hausen had been investigating since 1974 the involvement of HPV in genital warts (condyloma accuminata) and squamous cell carcinomas, using DNA-based techniques such as hybridisation.  The rarely malignant condylomas had been shown to contain papillomavirus particles in some cases in 1968, with a better association in 1970; however, cross-hybridisation studies by zur Hausen’s group on DNA of these and common wart viruses showed no relationship despite their very similar morphologies. 

Virus particles from genital warts (6 &7) and a common skin wart (8).  Reproduced from Brit. J. vener. Dis., JD Oriel and JD Almeida, 46, 37-42, 1970 with permission from BMJ Publishing Group Ltd.

Virus particles from genital warts (6 &7) and a common skin wart (8). Reproduced from Brit. J. vener. Dis., JD Oriel and JD Almeida, 46, 37-42, 1970 with permission from BMJ Publishing Group Ltd.

Zur Hausen speculated on the role of HPVs in squamous cell carcinomas in 1977; Gérard Orth and Jabłońska and colleagues went on to define the “…Risk of Malignant Conversion Associated with the Type of Human Papillomavirus Involved in Epidermodysplasia Verruciformis” in 1979.

Because this was the new era of cloning and sequencing of DNA, the zur Hausen group and others went on to isolate and characterise a number of new HPVs associated with genital cancers and other lesions in the early 1980s.  In particular, they showed that HPV types 16 and 18 could be found both as free virus in cervical cell sample biopsies and integrated into the cell genomes of cell lines derived from cervical cancers.  A major finding in 1987 was that the legendary HeLa cell line – derived from a malignant cervical tumour from a Henrietta Lacks in 1951contains multiple copies of the HPV-18 genome.  The first HPV genome sequence (of type 1b) was obtained in 1982; the first genital type (6b, from condylomas) in 1983, and the first high-risk cancer virus (type 16) in 1985.

Later work involving large international surveys showed by 1995 that 99.7% of cervical cancers contained DNA from so-called “high risk” HPVs, leading to the conclusion that these were the necessary cause of cervical cancer, and that around 70% of these cancers were caused by HPVs 16 and 18.  Since then, HPVs have been found in more than 80% of anal cancers, 70% of vulval and 40% of vaginal cancers, around half of all penile cancers, and in roughly 20% of head and neck cancers.  If 16% of cancers are due to infection, and HPVs cause or are implicated in 30% of these, then they are a significant cause of cancers worldwide.

Harald zur Hausen was awarded a half share of the 2008 Nobel Prize in Physiology or Medicinefor his discovery of human papilloma viruses [sic] causing cervical cancer”.  I blogged on this at the time, here.

Work on vaccines against papillomaviruses (PVs) started early, after demonstrations presumably in the 1930s that domestic rabbits inoculated with the cottontail rabbit PV (CRPV) could become immune to reinoculation after recovery, and in 1962 that a “…formalin-treated suspension of bovine papilloma tissue” provided protection against challenge, but was not therapeutic.  However, progress was stymied by the fact that it proved impossible to culture any of the PVs, and challenge material had to be made from infected animal tissue, even though it had been shown that isolated viral DNA was infectious.

This changed after the advent of molecular cloning, when whole viral genomes could be prepared in bacteria.  Model systems for use in PV vaccine research by 1986 included cattle and bovine PVs, rabbits and CRPV and rabbit oral PV, and dogs and canine oral PV.  It had also been demonstrated that the L1 major structural protein of type 1 BPV produced in recombinant bacteria was protective against viral challenge in calves.  Jarrett and colleagues demonstrated, in 1991 and 1993 respectively, that they had achieved prophylactic and therapeutic immunisation against cutaneous (ie: skin; caused by BPV-2) and then mucosal (respiratory tract; BPV-4) bovine PVs, using E coli-produced proteins.  L1 and L2 proteins were protective against BPV-2, while L2 was protective against BPV-4 infection.  They suggested BPV-4 was a good model for HPV-16 given its mucosal tropism.

By the early 1990s several groups had demonstrated that it was possible to make PV virus-like particles (VLPs) by expression in eukaryotic systems such as yeast or animal cells of the L1 major virion protein either alone, or together with the minor protein L2.  In 1991 Ian Frazer’s group showed that expression of HPV-16 L1 and L2 together but not separately in animal cells via recombinant vaccinia virus, resulted in 40 nm particles resembling the virion being made.  In 1992 John Schiller’s lab showed VLP formation by L1 alone, with both BPV-1 and HPV-16 L1 genes expressed in insect cells via a baculovirus vector. In 1993 came the demonstration that expression of the plantar wart-causing HPV-1 L1 gene alone and L1 and L2 genes together in animal cells via vaccinia virus, as well as of the genital wart-causing HPV-11 L1 expressed in insect cells, resulted in VLP formation.  By 1995, it had been shown that immunisation of rabbits with CRPV L1-only or L1+L2 VLPs, and of dogs with canine oral PV L1 VLPs, protected completely against viral challenge.

hpv vlps

This groundwork made it possible for Merck and GlaxoSmithKline to develop and to push through to human trial and licensure, two independent VLP-based vaccines.  Merck’s vaccine – Gardasil – is quadrivalent, consisting of a mixture of VLPs made in recombinant yeasts from expression of L1 genes of HPV types 6 and 11, to protect against genital warts, and types 16 and 18, for cervical lesions and cancer.  GSK’s offering – Cervarix – is a bivalent HPV-16 and -18 vaccine only, consisting of VLPs made via recombinant baculoviruses in insect cell culture.  These are only the second anti-cancer vaccines on offer, and have gone on to blockbuster status within months of their release: Gardasil was licenced in June 2006, and Cervarix in October 2009.

Both appear to protect very well against infection with the types specified, but not to affect established infections.  Their long-term efficacy against cervical cancer is still to be established, although Gardasil has certainly lessened the incidence of genital warts in Australia post introduction in 2007.  There is now also a VLP-based vaccine for canine oral PV.

Back to Contents

HPV vaccines: good, but out of reach for most

28 October, 2010

Human papillomavirus and cervical cancer - copyright Russell Kightley Media

The fact that genital Human papillomaviruses (HPVs) cause cervical cancer in women, as well as a variety of other growths and lesions in both men and women, is not in dispute.  The fact that cervical cancer is a major and growing scourge of women in developing countries is also non-contentious: of the more than 500 000 cases and 300 000 deaths due to the disease every year, more than 80% occur in the developing world.  This is largely because, unlike their counterparts in the developed world, poor Third World women either do not get screened using the relatively simple cytological detection method known as the Papanicolau (Pap) smear, or do not get treated thereafter.  Thus, cervical cancer really is a disease of poverty, given that most deaths occur due to a lack of simple procedures being provided in clinics.

The best method of prevention of an infectious disease is almost always a vaccine: HPV vaccines have been around a while now, and have proved to be both safe and efficacious – both primary requirements of a vaccine.  Both Merck and GlaxoSmithKline’s vaccines – the yeast-produced Gardasil and insect cell-produced Cervarix respectively – are virus-like particles (VLPs) composed of the major HPV coat protein L1 only; Cervarix contains particles of the high-risk HPV types (or species) 16 and 18 and Gardasil contains VLPs derived from HPVs 16 and 18 as well as the genital wart-causing 6 and 11.

The vaccines are both “blockbusters” – that is, they both have sales of over US$1 billion – are are possibly the best-researched human vaccines ever made.  They are also possibly among the most expensive: Gardasil went on sale in the USA at $120 per dose – and a full treatment consists of 3 doses, for a total cost per person treated of $360; Cervarix retails at around the same price.

This is so far beyond the budget of most people in most countries as to be akin to their expectation of winning a lottery – and of the order of 1000x as expensive as possibly the most widely distributed vaccine in the world, which is Bacillus Calmette-Guerin (BCG), the Mycobacterium tuberculosis vaccine.

It is a sad fact of life that the whole WHO Expanded Programme on Immunisation – EPI – six vaccine bundle of polio, measles, neonatal tetanus, diphtheria, pertussis (whooping cough) and tuberculosis vaccines “… costs no more than US$1 … (at UNICEF-discounted prices), and another US$14 for programme costs (laboratories, transport, the cold chain, personnel and research) to fully immunize a child”.  It is also a sad fact that the new generation of vaccines – exemplified by the yeast-made recombinant hepatitis B virus (HBV) subunit vaccine – are expensive even when discounted after patents have expired: thus, HBV vaccine launched at US$150 for three doses in 1986, and came down to around $10 now.  It is included in EPI bundles in some countries because of even greater discounting (down to ~$1); however, its cost is generally greater than the rest of the bundle combined.

So what should happen with HPV vaccines?  How are they going to get to the people who need them most, at the price they can afford – which is nothing?  The simple answer is that governments and international agencies must buy them, as is presently the case with the EPI package – and that they must be very heavily discounted, to allow this.

In fact, at the recent Papillomavirus Conference in July in Montreal (which we should write up in more detail elsewhere), I heard that the Mexican government has managed to secure  HPV vaccine at US$27/dose – or 25% of the regular price – for a campaign they are mounting in some regions to supply vaccine for free.  So it is possible – however, even this price is far too high, as it represents about the per capita per annum public health expenditure in the poorest countries who probably need it most.

It raises my blood pressure, therefore, when I read that in several highly-developed western countries there are a number of controversies (see also here) around HPV vaccination: yet again, on the heels of the measles and MMR (measles-mumps-rubella viruses) vaccines-cause-autism idiocy, people who can afford vaccines are among the most stupid when it comes to having them.

The facts, as opposed to the hype, are these:

  • the vaccines were proven to be safe in extended clinical trials
  • they were proven to be efficacious in preventing infection and development of precancerous lesions and genital warts – in men as well as in women

Inflammatory stories about deaths due to HPV vaccines are just that – stories.  A recent publication from India, where the government suspended a vaccine study due to deaths of girls involved in the trial, puts things into perspective:

“The causes of death had been scrutinized by the State Government and reported to ICMR and Drugs Controller General of India; all were satisfied that no death was vaccine-related [ my emphasis]. We understand that there is an unusually high frequency of death among girls in this community, which is what deserves immediate enquiry and remedial interventions….
The death of a 14-year old British girl shortly after receiving HPV Vaccine,evoked considerable media attention across the world. The necropsy studies showed that she had malignant tumor affecting her heart and lungs…. The vaccine was not her cause of death.”

There is also considerable silliness surrounding the vaccination of girls – and, hopefully, boys! – against what is very largely a sexually transmitted virus.

Do people have the same problem with HBV?

Or – is it possible?? – they don’t know that it is also frequently a sexually-transmitted disease, among adults at least?

In any case, the kinds of prudishness-by-proxy that result in non-vaccination against HPV or HBV are simple foolishness.

And I would be happy to tell anyone so.

Meantime, we want to make HPV vaccines in plants. Any sponsors??