Archive for the ‘Influenza viruses’ Category

“Online ‘recipes’ for bird flu virus add to bioterrorism threat!” No. No, they don’t.

10 December, 2015

The means of engineering potentially deadly avian influenza is freely available on the internet.

Despite continuing global efforts to contain avian influenza, or bird flu, the means of engineering this potentially deadly H5N1 virus to render it transmissible to humans is freely available on the internet. So too are similar instructions for engineering a virus like the “Spanish flu”, which killed some 50 million people in the pandemic of 1918-19.

The digital floodgates opened in 2011 when a peak US regulatory watchdog came down in favour of scientists seeking to publishing their work engineering the H5N1 virus. The decision to uphold such “scientific freedom” was and remains, highly contentious among the global scientific community. Its implications, however, are readily available as online “recipes” for potentially dangerous viruses, which add a new risk to the already considerable challenges of maintaining global biosecurity in the 21st century. For all the recent advances in biomedical science, drugs, vaccines and technology, this is a challenge we remain ill-equipped to meet.

Read more: http://www.theage.com.au/comment/online-recipes-for-contagious-diseases-means-australias-bioterrorism-threat-is-real-20151208-gli97v.html#ixzz3tvWn63AE ;
Follow us: @theage on Twitter | theageAustralia on Facebook

Sourced through Scoop.it from: www.theage.com.au


 

OFFS: seriously!  Again?!  Someone else has just discovered that entire virus genomes are freely available via PubMed, along with papers on gain-of-function experiments, and immediately leaps to the conclusion that this means “…the means of engineering this potentially deadly H5N1 virus to render it transmissible to humans is freely available on the internet”.

I’m sorry, this is being simple-minded to the point of parody.  I have written elsewhere – here in ViroBlogy, and in Nature Biotech’s Bioentrepreneur blog section – on how it is MOST unlikely that bearded fellows in caves in Afghanistan or remote farms in Montana are going to whip up weaponised batches of H5N1 flu or Ebola.

Yes, the papers are available; yes, the sequences necessary to make a potentially (and I say potentially advisedly) deadly virus are available online; yes, one can bypass the blocks on getting resynthesised genes in developing countries (hint: China).

But could anyone outside of a sophisticated lab environment use these to make anything nasty?

No.

Seriously, no.

Just think about what you would need to make weaponised flu, for example.  There are two ways to go here, these being the totally synthetic route (“mail order” DNA – HATE that term!), with some serious molecular biology and cell culture at the end of it, and the “natural” route – which would involve getting a natural and nasty isolate of H5N1 / H7N9 / H9N2, and being able to culture it and engineer it as well.

Both routes require a minimum of a serious 4-yr-degree-level training in microbiology / mol biol, as well as laboratory resources that would include incubators, biohazard cabinets, and disposables and reagents that are not on your normal terrorist’s priority purchase list.

In fact, the kinds of resources you’d find at a University or Institute Infectious Disease unit – or state-sponsored biowarfare lab.

Seriously, now: in order to use the information that is “freely available”, you’d have to do what amounts to an entire postgrad degree’s worth of work just to set up the kinds of reverse genetics necessary to WORK with recombinant flu, presuming you already had an isolate, and even more than that if you were to start with synthesised DNA and try to recreate infectious virus.

Again, this is the kind of work they do in biowarfare / biodefence labs (funny how they’re pretty much the same thing, isn’t it?) – because it’s finicky, expensive, laborious – and potentially dangerous to the researcher.

And it’s interesting that the only rumoured escapes of biowarfare agents have been of flu in 1977 in the old Soviet Union, and of anthrax in Sverdlovsk in the USSR in 1979. And in the US in 2001, and again in 2014.  ALL of them from official facilities, I will discreetly point out.

Oh, there have been rumours that Saddam’s Iraq weaponised camelpox; that the USSR/Russia cloned Ebola into a poxvirus; that Al-Qaeda tested anthrax – but the first two took state resources, and if the third happened at all, it’s nothing that the UK and USA and friends hadn’t already done in the 1940s.

IT IS NOT THAT EASY TO MAKE RECOMBINANT VIRUSES.

Seriously.

See on Scoop.itVirology News

Testing out a textbook on Virology

5 December, 2015

Like my recent books on History of Viruses and Influenza, I’m constructing an ebook Introduction to Virology textbook – and I’d like people’s opinions.

It’s going to look something like this:

Virus_Picture_Book_copy_2_iba

 

It will be based on my web pages that were so cruelly destroyed, but will be PROFUSELY illustrated, using all of the bells and whistles built into the iBooks Author app, with liberal use of Russell Kightley’s very excellent virus picture library.

And I will sell it for US$20 or less.

Tell me what you think of the taster – and there will be more.

Virology Africa 2015: Update and Registration

19 August, 2015

REGISTRATION IS NOW OPEN – VIROLOGY AFRICA 2015

On behalf of the Institute of Infectious Disease and Molecular Medicine of the University of Cape Town and the Poliomyelitis Research Foundation, we are pleased to invite you to Virology Africa 2015 at the Cape Town Waterfront.

VENUE AND DATES:

The conference will run from Tuesday 1st – Thursday 3rd December 2015. The conference venue is the Radisson Blu Hotel with a magnificent view of the ocean. The hotel school next door will host the cocktail party on the Monday night 30th November and in keeping with Virology Africa tradition, the dinner venue is the Two Oceans Aquarium.

IMPORTANT DATES

Early Bird Registration closes – 30 September 2015
Abstract Submissions deadline – 30 September 2015

The ACADEMIC PROGRAMME will include plenary-type presentations from internationally recognised speakers. We wish to emphasise that this is intended as a general virology conference – which means we will welcome plant, human, animal and bacterial virology contributions. The venue will allow for parallel workshops of oral presentations. There will also be poster sessions. Senior students will be encouraged to present their research. We have sponsorship for students to attend the meeting and details will be announced later in the year.

A program outline has been added to the website

WORKSHOPS

Our preliminary programme includes two workshops.

There is a hands-on workshop on “Plant cell packs for transient expression: Innovating the field of molecular biopharming”, with the contact person being Dr Inga Hitzeroth – Inga.Hitzeroth@uct.ac.za. This workshop will run at UCT one day before the conference, 30th November, and a second day, 4th December, after the conference.

The second workshop is on “”Viromics for virus discovery and viral community analysis”. The workshop at UCT will be on 4 and 5 December with the contact person being Dr Tracy Meiring – tracy.meiring@uct.ac.za.

Some of the workshop presenters will be integrated into the conference programme but the practical components will be run at University of Cape Town. Separate applications are necessary for each workshop.

If you are prepared to fund an internationally recognised scientist to speak at the conference or if you wish to organise a specialist workshop as part of the conference, please contact
Anna-Lise Williamson or Ed Rybicki.

For any enquiries please contact
Miss Bridget Petersen/ Email: conference1@onscreenav.co.za or phone: +27 21 486 9111
Ms Deborah McTeer/Email: conference@onscreenav.co.za or +27 83 457 1975

Anyone interested? A candidate virology textbook…

28 July, 2015

I would like to test the response to a Introduction to Virology ebook that I want to develop from my extant Web-based material, given that this is likely to disappear soon with our Web renewal project here at UCT.

Virus_Picture_Book_copy_iba

Download the Virus Picture Book excerpt here. And then please tell me what you think / whether you would buy one (projected price US$15 – 20)?  Ta!

Influenza virus: a short introduction

14 July, 2015

This is excerpted from the ebook “Influenza Virus. Introduction to a Killer”, which is available here for US$9.99 .

Influenza: the disease

Influenza: a disease and a virus

Influenza as a disease in humans has been known for centuries; however, its cause was only discovered in the early 20th century: this was the group of viruses now known as Influenza virus types A, B and C.

There are several influenza viruses circulating in humans at any one time; these cause “seasonal flu”, which is usually a mild disease because most people have some degree of immunity.

Influenza pandemics, however, are caused by novel viruses – which are generally derived from animals, and usually originate in birds.  Here, the disease can be much more severe.

Influenza viruses have caused some of the biggest and yet some of the most insidious disease outbreaks to have hit humankind: from 1918 to 1920, the “Spanish Flu” pandemic killed more than 60 million people across the world; subsequent pandemics in 1957, 1968 and 1977 killed millions more, and the count is still unclear on the 2009 pandemic. However, in any given year more than 400 000 people probably die of so-called “seasonal flu” – yet universal vaccination against it is still a dream.

What is Influenza?

What is Influenza?

The Centers for Disease Control and Prevention in the USA define influenza as

“…a contagious respiratory illness caused by influenza viruses that infect the nose, throat, and lungs. It can cause mild to severe illness, and at times can lead to death.”

The disease is transmitted mainly via droplets of respiratory secretions: these result from sneezing or coughing, which blows out a fine cloud of droplets or aerosol from the upper airways of infected people.  Breathing in or inhalation of these droplets – which can happen from 2 metres away – or transfer of droplets by hand from a contaminated surface to the mouth, is enough to cause infection. 

The virus initially infects cells of the upper airway, or the respiratory epithelium.  Spread to lower parts of the respiratory system, such as into the lung, depends upon the particular virus, and whether or not the individual is partially immune.

  • Fever or chills
  • Cough
  • Sore throat
  • Rhinitis, or runny nose
  • Muscle or body aches, headaches
  • Tiredness, “fuzzy head”
  • Vomiting and/or diarrhoea (more common in children than adults).

The average incubation period, or time from infection to disease, is about 48 hours.  Full recovery can take a month, although about two weeks is more common in seasonal flu.  People can pass on the virus before they show symptoms, and each infected person on average infects another 1.4 people.

While flu may be mild enough that it is hardly noticed, severe disease can also occur – especially in the elderly, the very young, heavy smokers, people who are chronically ill from other causes – and immunocompromised individuals.

While the virus can cause pneumonia directly due to damaging lung tissue, as happened in the “Spanish Flu” pandemic, severe illness with pneumonia is more usually due to secondary bacterial infections – which can be treated with antibiotics, unlike the viral pneumonia

Seasonal flu, or the disease caused by viruses circulating in the population, typically has an “attack rate” of between 5-15% of the population in annual epidemics.  Case fatality rates, or deaths among those infected, are usually between 0.1 – 0.3%. However,  pandemic flu – caused by new strains which arise spontaneously, and to which people are not immune – can attack from 25-50%, and kill 5% of those infected.  Seasonal flu also mainly infects children – because older people are often immune – but mainly causes severe disease and death in the elderly: up to 90% of victims are usually 65 or older

Conversely, pandemic strains may affect a different set of age groups: for example, the Spanish Flu affected mainly healthy young adults.

Seasonal influenza is typically a disease of the autumn and winter seasons in temperate zones – meaning October – March in the northern hemisphere, and April – August in the southern.  The CDC FluView graph shown here clearly illustrates the cyclical nature of seasonal flu, tracked in the USA over a 5 year period.  However, the exact timing is not reliable, and epidemics may peak as early as October in the north, or April in the south, or as late as the end of the season.

Tropical zones have a different epidemic profile:

here the virus may circulate year-round, typically with a peak during the one or two rainy seasons.  Because of demographic reasons incidence is severely under-reported: however, in a seasonal outbreak in Madagascar in 2002, there were more than 27 000 cases reported in 3 months, with over 800 deaths for a case-fatality rate of around 3%.  A WHO coordinated investigation of this outbreak found that there were severe health consequences in poorly nourished populations with limited access to adequate health care.

Why is influenza seasonal?

Many reasons have been invoked over the years to explain this, ranging from temperature, humidity, school schedules, increased indoor crowding during winter or rainy seasons, and even variations in host immunity due to lack of vitamin D or melatonin.  However, the same reasons cannot be given for both the increase in influenza incidence in temperate climates with the onset of winter, and the rainy season peaks in tropical regions, given the very different environmental conditions prevailing.

A recent study set out to systematically determine the interactions between relative humidity, and salt and mucus and protein content of droplets containing live flu virus, on the viability of the virus – and came up with conclusions that could explain the temperate / tropical transmission differences.

Essentially, their explanation for temperate region seasonality is that there is low relative humidity indoors in winter due to heating: this leads to increased survival of virus due to drying of particles – influenza A viruses are stabilised by being dried in the presence of salts, mucus and proteins – and leads to aerosols persisting longer in the interior environment due to smaller size, and being propagated further, meaning most transmission would be by this route.  Increased time spent indoors and increased indoor crowding due to the climate would obviously increase transmission rates under these conditions. 

Tropical environments present a very different picture: here, high temperatures would accelerate virion decay, which would tend to decrease any transmission.  However, in rainy seasons, temperatures drop and relative humidity increases to nearly 100% – conditions conducive to survival of large drops, which settle out quickly onto surfaces, where the virus remains viable.  Thus, transmission could be mainly by surface contact.  The same social factors apply as for temperate climates, with frequent rain leading to more time indoors and more crowding – and a greater opportunity for transmission.

Creating more effective vaccines against flu virus

4 July, 2015

Flu vaccines can be something of a shot in the dark. Not only must they be given yearly, there’s no guarantee the strains against which they protect will be the ones circulating once the season arrives. New research by Rockefeller University scientists and their colleagues suggests it may be possible to harness a previously unknown mechanism within the immune system to create more effective and efficient vaccines against this ever-mutating virus.

Sourced through Scoop.it from: www.news-medical.net

So: antibody-antigen complexes work better than antigen alone – and sialylation of the antibody is important.  Vaccinology really is entering the 21st century!

See on Scoop.itVirology News

The guru speaks: new eBooks on viruses!

24 June, 2015

I have to thank my long-time digital media guru, Alan J Cann, for reviewing our humble eBook offerings in MicrobiologyBytes.  You good man!  Much appreciated, and it will not have escaped our attention that this endorsement may actually result in sales.  If so, a glass or three of the finest red is yours if you come to these shores, good sir B-)

eBook on “Influenza Virus: Introduction to a Killer”

17 June, 2015

For some five years now, I have been simultaneously writing two ebooks on viruses. The one – originally part of a longer effort not yet finished – is “A Short History of the Discovery of Viruses” which is also advertised on Virology News; the other is a labour of love on influenza.

Labour of love for me because I got more into it the more I read, and because Russell Kightley’s images were so amazing.

Both were written using Apple’s iBooks Author app; both are designed to be read by Apple’s iBooks app on iPad, iPhone or Mac.

So here it is:

Influenza Virus: Introduction to a Killer

Enjoy. Buy!

Influenza_1-6-15_sample_iba

 

Tracing the bird flu outbreak in North American poultry flocks

14 May, 2015

(Reuters) – The United States is facing its worst outbreak on record of avian influenza as three deadly strains have hit North American poultry flocks since December, with the spread of infection picking

Source: www.reuters.com

Useful timeline!

See on Scoop.itVirology News

A Short History of the Discovery of Viruses

6 March, 2015

Now much updated, streamlined, added to and otherwise tarted up!  This is the Web version of an eBook, which you can now get here:

A Short History of the Discovery of Viruses – Edward Rybicki

Slide1

Part 1: Filters and Discovery

Part 2: The Ultracentrifuge, Eggs and Flu

Part 3: Phages, Cell Culture and Polio

Part 4: RNA Genomes and Modern Virology

Sidebar 1: The Discovery of Filoviruses

Sidebar 2: Papillomaviruses and Human Cancer

Sidebar 3: Epstein-Barr Virus and Hepatitis B Virus

Sidebar 4: Human Retroviruses and Cancer

Sidebar 5: Maize Streak Virus: The Early History

Sidebar 6: Rinderpest and Its Eradication

Sidebar 7: Viruses and human cancer: the molecular age

Copyright Edward P Rybicki and Russell Kightley, February and March 2015, except where otherwise noted.


Follow

Get every new post delivered to your Inbox.

Join 1,078 other followers