Archive for August, 2014

20 years on, and here we are with Ebola, again

25 August, 2014

Browsing through my own web pages in an effort to clean up dead-end links, and cull tired material, I discovered that my link to an essay I wrote 19 years ago was still live – and as it referred to something written in and put up on our nascent Web server in 1994, means it has a 20-year anniversary round about now.

My essay is

The Student, the Web and the Ebola Connection

or:

Dr Jacobson, are you going to Kikwit?”

…and it is a record of events that resulted in 1994 from (a) an Honours student essay being written on “Emerging Viruses”, and (b) me playing around with the then-very-new WWW server that UCT has enabled – but didn’t tell anyone about, because they didn’t want anyone to use it until they had sorted out policies.  Oh, and (c) – the Kikwit Ebola outbreak in 1995.

I wrote in 1995:

“The whole phenomenon has been an object exercise in the power of the Web as a tool for the wide dissemination of information: we reached not only professional virologists, but also health-care professionals, and – most importantly – the lay public on a large scale”

And of course, this is even more true now – which is why, following the benign guidance of The Guru Cann, I maintain ViroBlogy and Virology News, and heartily recommend a Web presence to anyone who feels they need to disseminate information on topics of specialist and generalist interest to the world at large.

Of course, nearly all the links out of that essay are now dead – including to the original essay, that for a while there in 1995 was the ONLY detailed information on Ebola available on the Web.  So here is Alison Jacobson’s original essay, in full, revealed by going to my teaching material and checking out essays from 1997 and thereabouts:

EMERGING AND RE-EMERGING VIRUSES: AN ESSAY

Of course, I also maintained a daily update on the Kikwit outbreak, and then a couple of the next ones, before the Web caught up with me and it became easier to just trawl it for news via Google and its predecessors.  It still makes interesting reading, though, to go through some of what was posted from the disease frontlines back in the 1990s – and to remember that I had the TIME to do that kind of thing!

Where we are now

Well, here we are with what is the worst outbreak of Ebola in history, and here am I – again – trying to keep up with it.  This time, by the very excellent medium of the Web news aggregator Scoop.it, where I have established Virology News as a means of quickly and easily getting news out to the public.  Again, following the very excellent example of TGC, but also Chris Upton, who babied me along by letting me co-curate his Virology and Bioinformatics site.

Of course, there is a new angle to this outbreak – and that has been the compassionate use of a plant-made monoclonal antibody cocktail (ZMapp), hitherto only tested preclinically in a primate model.  Fortuitously, this all happened while I was finishing off a review on plant-made viral vaccines, so I reported on it – with references – here on ViroBlogy.

I was also able to report on it in my Plant Molecular Farming news site, with some authoritative statements from pioneers of the technology: Charles Arntzen from the Arizona Biodesign Institute sent through a link for an interview he did, and CNN covered it quite well too.  Charlie also sent through a set of links in an email that he was happy to share:

“The original story

There is a lot of interest from the press in “why tobacco” and “how does it work”?

The other focus is on the politics of scale up of the drug — it seems that criticism of the US is mounting in some sectors of Africa, and elsewhere.   I talked to a Spanish Language radio news station this morning, and the main questions related to “why is this a Secret Drug; are you trying to hide the secret from the world?”    “Is Reynolds tobacco trying to stop the supply of this drug to Africans?”    One guy asked if it was true that the Ebola Virus had been created in a test tube.

It seems that the press is largely to blame for using terms like Secret Drug.   It appears that they are also trying to mount political pressure to make a lot more of the drug to help Africans.   [This was] a nice job answering some of this….”

And at time of writing, the outbreak was still raging, had spread to Nigeria, and airlines were banning travel to half of West Africa – and alarmist tourist firms were advising people not to come to South and East Africa, as well.  The WHO has also said the impact is probably much greater than reported.

And Alison Jacobson is alive and well, and NOT working in virology any more.  Sadly!

Advertisements

5 Viruses That Are More Frightening Than Ebola

20 August, 2014

By Elizabeth Palermo, Staff Writer
Published: 08/15/2014 01:58 PM EDT on LiveScience
The Ebola virus has now killed more than 1,000 people in West Africa. Although the mortality rate of the most recent outbreak isn’t as high as in previous events, it’s still the case that most people who become infected with Ebola will not survive. (The mortality rate is about 60 percent for the current outbreak, compared with 90 percent in the past, according to the National Institutes of Health.)

1. Rabies

2. HIV

3. Influenza

4. Mosquito-borne viruses

5. Rotavirus

 

 

Source: www.huffingtonpost.com

Amen!  I have a fondness for Ebola simply because it is so spectacularly nasty, but it has killed fewer people in 40 years than flu or rotavirus does in 1.

Seriously: just like charismatic animals like elephants and tigers get all of the headlines when it comes to being endangered, rather than the humble tree frog(s), so do Ebola and Marburg get all of the attention when it comes to reportage on virus epidemics / pandemics.

See on Scoop.itVirology and Bioinformatics from Virology.ca

Ill prepared for an influenza pandemic

18 August, 2014

Over the last 500 years, there have been, on average, three severe influenza pandemics in each century. The most recent pandemic was declared in 2009. Yet despite much investment in public health and many improvements in vaccine production techniques and know-how, the availability of influenza vaccines during this event was far from adequate. Six months into the pandemic, 534 million doses were available, and after one year that number had risen to 1.3 billion — enough for only 8%and 25%, respectively, of the world population. We were lucky that the pandemic declared in 2009 turned out later to be mild and that just one shot of vaccine was sufficient to protect most people. This is not usually the case during a severe influenza pandemic.

 

Source: www.nature.com

"As countries continue to pre-book pandemic supply, it is more and more likely that the limited vaccines available during the first months of any pandemic during the next few years will be sold out almost completely"

And what does everyone think happened in South Africa during most of 2009 and 2010?

Well, they probably don’t – because not that many of them got sick.  But THERE WAS NO VACCINE for the general population until LATE 2010 – when the chances of another round of H1N1pdm 2009 had dissipated due to summer coming on.

And the vaccine that HAD come into the the country in 2010 got used for medical personnel, and – for the 2010 World Cup staff.

Seriously, we need to do better than this – and responding QUICKLY to news of a pandemic would be the ticket.

Using plants B-)

See on Scoop.itVirology News

What Would Happen if You Got Ebola?

13 August, 2014

A secondary infection in the U.S. is highly unlikely. But here’s how the healthcare system would respond if there was one.

Source: www.theatlantic.com

Goes without saying that this would happen in a lot of other places, too.  Including our very own South Africa – where it HAS happened, with Marburg, Ebola and Lujo viruses.  Written about right here on ViroBlogy.

See on Scoop.itVirology News

How can geminiviral Rep capture the cell cycle of differentiated plant cells?

12 August, 2014

African cassava mosaic virus (ACMV) in the geminivirus family has being affected 500 million people worldwide by devastating cassava crops during the past decades. It has caused severe symptoms and reduced yield up to the complete loss of roots, the main starchy food source especially for subsistence farmers in Africa. How can a tiny virus with a small genome evoke such dramatic effects? The viral key component, the replication-initiator protein (Rep), forces differentiated plant cells in the phloem to reactivate DNA synthesis. Even more, it does the same in model cells of fission yeast. We have identified, now, a potential cyclin interaction motif, RXL, in the sequence of ACMV Rep, which may be important for cell cycle control. This motif is essential to induce rereplication in yeast and necessary for viral infection of plants.

 

Source: www.virologyhighlights.com

I am a sucker for geminiviruses and their replication – as can be seen in the pages published here and elsewhere over the years.  It is fascinating to me that a small protein like Rep – only ~30 kDa – can do so many things, and especially interfere in such a fundamental way with organised, differentiated cells.

What is even more interesting is that it can do it in such a wide variety of systems: it’s been shown that ACMV can replicate in maize protoplasts as well as in the dicotyledonous cassava; it can evidently function well in yeast as well – and via a pathway that no-one suspected before now.

Truly, a protein of many parts!  Congratulations to Katharina Hipp and to my old friends Bruno and Holger.

See on Scoop.itVirology News

Plant-made antibodies used as therapy for Ebola in humans: post-exposure prophylaxis goes green!

5 August, 2014
Ebola virus budding from an infected cell.  Courtesy of Russell Kightley Media

Ebola virus budding from an infected cell.
Courtesy of Russell Kightley Media

Yes, I know you fans of ViroBlogy like Ebola – and just coincidentally, I was desperately trying to finish a review*# on “Plant-based vaccines against viruses” against a backdrop of an out-of-control Ebola epidemic in West Africa, when three different people emailed me different links to news of use of a plant-made monoclonal antibody cocktail.  I immediately included it in my review – and I am publishing an excerpt here, for informations’ sake.  Enjoy!

* = which, despite their having commissioned it from me, the good folk at “Viruses” an unnamed journal decided it “…may not have substantial differences with the reviews you published recently” – and rejected it.  I shall have revenge#.  Oh, yes…B-) # = and I did: I sent the thing as it was to Virology Journal, and it was accepted with minimal changes.  And is now highly accessed B-)

Plantibodies against Ebola

The production of anti-Ebola virus antibodies has recently been explored in plants: this could yet become an important part of the arsenal to prevent disease in healthcare workers, given that at the time of writing an uncontrolled Ebola haemorrhagic fever outbreak was still raging in West Africa, and the use of experimental solutions was being suggested (Senthilingam, 2014). For example, use of a high-yielding geminivirus-based transient expression system in N benthamiana that is particularly suited to simultaneous expression of several proteins allowed expression of a MAb (6DB) known to protect animals from Ebola virus infection, at levels of 0.5 g/kg biomass (Chen et al., 2011). The same group also used the same vector system (described in detail here (Rybicki and Martin, 2014)) in lettuce to produce potentially therapeutic MAbs against both Ebola and West Nile viruses (Lai et al., 2012).

A more comprehensive investigation was reported recently, of both plant production of Mabs and post-exposure prophylaxis of Ebola virus infection in rhesus macaques (Olinger et al., 2012). Three Ebola-specific mouse-human chimaeric MAbs (h-13F6, c13C6, and c6D8; the latter two both neutralising) were produced in whole N benthamiana plants via agroinfilration of magnICON TMV-derived viral vectors. A mixture of the three MAbs – called MB-003 – given as a single dose of 16.7 mg/kg per Mab 1 hour post-infection followed by doses on days 4 and 8, protected 3 of 3 macaques from lethal challenge with 1 000 pfu of Ebola virus. The researchers subsequently showed significant protection with MB-003 treatment given 24 or 48 hours post-infection, with four of six monkeys testing surviving, compared to none in two controls. All surviving animals treated with MB-003 experienced insignificant if any viraemia, and negligible clinical symptoms compared to the control animals. A significant finding was that the plant-produced MAbs were three times as potent as the CHO cell-produced equivalents – a clear case of plant production leading to “biobetters”. A follow-up of this work investigated efficacy of treatment with MB-003 after confirmation of infection in rhesus macaques, “according to a diagnostic protocol for U.S. Food and Drug Administration Emergency Use Authorization” (Pettitt et al., 2013). In this experiment 43% of treated animals survived, whereas all controls tested here and previously with the same challenge protocol died from the infection.

In news from just prior to submission of this article, a report quoted as coming from the National Institute of Allergy and Infectious Diseases states that two US healthcare workers who contracted Ebola in Liberia were treated with a cocktail of anti-Ebola Mabs called ZMapp – described as a successor to MB-003 – developed by Mapp Pharmaceutical of San Diego, and manufactured by Kentucky BioProcessing (Langreth et al., 2014). Despite being given up to nine days post-infection in one case, it appears to have been effective (Wilson and Dellorto, 2014).

A novel application of the same technology was also used to produce an Ebola immune complex (EIC) in N benthamiana, consisting of the Ebola envelope glycoprotein GP1 fused to the C-terminus of the heavy chain of the humanised 6D8 MAb, which binds a linear epitope on GP1. Geminivirus vector-mediated co-expression of the GP1-HC fusion and the 6D8 light chain produced assembled immunoglobulin, which was purified by protein G affinity chromatography. The resultant molecules bound the complement factor C1q, indicating immune complex formation. Subcutaneous immunisation of mice with purified EIC elicited high level anti-GP1 antibody production, comparable to use of GP1 VLPs (Phoolcharoen et al., 2011). This is the first published account of an Ebola virus candidate vaccine to be produced in plants.

References

Chen, Q., He, J., Phoolcharoen, W., Mason, H.S., 2011. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Human vaccines 7, 331-338.

Lai, H., He, J., Engle, M., Diamond, M.S., Chen, Q., 2012. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant biotechnology journal 10, 95-104.

Langreth, R., Chen, C., Nash, J., Lauerman, J., 2014. Ebola Drug Made From Tobacco Plant Saves U.S. Aid Workers. Bloomberg.com.

Olinger, G.G., Jr., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., Morton, J., Pauly, M., Whaley, K.J., Lear, C.M., Biggins, J.E., Scully, C., Hensley, L., Zeitlin, L., 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America 109, 18030-18035.

Pettitt, J., Zeitlin, L., Kim do, H., Working, C., Johnson, J.C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., Morton, J., Pauly, M.H., Whaley, K.J., Ingram, M.F., Zovanyi, A., Heinrich, M., Piper, A., Zelko, J., Olinger, G.G., 2013. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Science translational medicine 5, 199ra113.

Phoolcharoen, W., Bhoo, S.H., Lai, H., Ma, J., Arntzen, C.J., Chen, Q., Mason, H.S., 2011. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant biotechnology journal 9, 807-816.

Rybicki, E.P., Martin, D.P., 2014. Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants. Current topics in microbiology and immunology 375, 19-45.

Senthilingam, M., 2014. Ebola outbreak: Is it time to test experimental vaccines? CNN.

Wilson, J., Dellorto, D., 2014. 9 questions about this new Ebola drug. CNN.

2013 in review: ViroBlogy seems to be doing OK??

5 August, 2014

The WordPress.com stats helper monkeys prepared a 2013 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 24,000 times in 2013. If it were a concert at Sydney Opera House, it would take about 9 sold-out performances for that many people to see it.

Click here to see the complete report.