Archive for the ‘biofarming’ Category

20 years on, and here we are with Ebola, again

25 August, 2014

Browsing through my own web pages in an effort to clean up dead-end links, and cull tired material, I discovered that my link to an essay I wrote 19 years ago was still live – and as it referred to something written in and put up on our nascent Web server in 1994, means it has a 20-year anniversary round about now.

My essay is

The Student, the Web and the Ebola Connection

or:

Dr Jacobson, are you going to Kikwit?”

…and it is a record of events that resulted in 1994 from (a) an Honours student essay being written on “Emerging Viruses”, and (b) me playing around with the then-very-new WWW server that UCT has enabled – but didn’t tell anyone about, because they didn’t want anyone to use it until they had sorted out policies.  Oh, and (c) – the Kikwit Ebola outbreak in 1995.

I wrote in 1995:

“The whole phenomenon has been an object exercise in the power of the Web as a tool for the wide dissemination of information: we reached not only professional virologists, but also health-care professionals, and – most importantly – the lay public on a large scale”

And of course, this is even more true now – which is why, following the benign guidance of The Guru Cann, I maintain ViroBlogy and Virology News, and heartily recommend a Web presence to anyone who feels they need to disseminate information on topics of specialist and generalist interest to the world at large.

Of course, nearly all the links out of that essay are now dead – including to the original essay, that for a while there in 1995 was the ONLY detailed information on Ebola available on the Web.  So here is Alison Jacobson’s original essay, in full, revealed by going to my teaching material and checking out essays from 1997 and thereabouts:

EMERGING AND RE-EMERGING VIRUSES: AN ESSAY

Of course, I also maintained a daily update on the Kikwit outbreak, and then a couple of the next ones, before the Web caught up with me and it became easier to just trawl it for news via Google and its predecessors.  It still makes interesting reading, though, to go through some of what was posted from the disease frontlines back in the 1990s – and to remember that I had the TIME to do that kind of thing!

Where we are now

Well, here we are with what is the worst outbreak of Ebola in history, and here am I – again – trying to keep up with it.  This time, by the very excellent medium of the Web news aggregator Scoop.it, where I have established Virology News as a means of quickly and easily getting news out to the public.  Again, following the very excellent example of TGC, but also Chris Upton, who babied me along by letting me co-curate his Virology and Bioinformatics site.

Of course, there is a new angle to this outbreak – and that has been the compassionate use of a plant-made monoclonal antibody cocktail (ZMapp), hitherto only tested preclinically in a primate model.  Fortuitously, this all happened while I was finishing off a review on plant-made viral vaccines, so I reported on it – with references – here on ViroBlogy.

I was also able to report on it in my Plant Molecular Farming news site, with some authoritative statements from pioneers of the technology: Charles Arntzen from the Arizona Biodesign Institute sent through a link for an interview he did, and CNN covered it quite well too.  Charlie also sent through a set of links in an email that he was happy to share:

“The original story

There is a lot of interest from the press in “why tobacco” and “how does it work”?

The other focus is on the politics of scale up of the drug — it seems that criticism of the US is mounting in some sectors of Africa, and elsewhere.   I talked to a Spanish Language radio news station this morning, and the main questions related to “why is this a Secret Drug; are you trying to hide the secret from the world?”    “Is Reynolds tobacco trying to stop the supply of this drug to Africans?”    One guy asked if it was true that the Ebola Virus had been created in a test tube.

It seems that the press is largely to blame for using terms like Secret Drug.   It appears that they are also trying to mount political pressure to make a lot more of the drug to help Africans.   [This was] a nice job answering some of this….”

And at time of writing, the outbreak was still raging, had spread to Nigeria, and airlines were banning travel to half of West Africa – and alarmist tourist firms were advising people not to come to South and East Africa, as well.  The WHO has also said the impact is probably much greater than reported.

And Alison Jacobson is alive and well, and NOT working in virology any more.  Sadly!

Plant-made antibodies used as therapy for Ebola in humans: post-exposure prophylaxis goes green!

5 August, 2014
Ebola virus budding from an infected cell.  Courtesy of Russell Kightley Media

Ebola virus budding from an infected cell.
Courtesy of Russell Kightley Media

Yes, I know you fans of ViroBlogy like Ebola – and just coincidentally, I was desperately trying to finish a review* on “Plant-based vaccines against viruses” against a backdrop of an out-of-control Ebola epidemic in West Africa, when three different people emailed me different links to news of use of a plant-made monoclonal antibody cocktail.  I immediately included it in my review – and I am publishing an excerpt here, for informations’ sake.  Enjoy!

Plantibodies against Ebola

The production of anti-Ebola virus antibodies has recently been explored in plants: this could yet become an important part of the arsenal to prevent disease in healthcare workers, given that at the time of writing an uncontrolled Ebola haemorrhagic fever outbreak was still raging in West Africa, and the use of experimental solutions was being suggested (Senthilingam, 2014). For example, use of a high-yielding geminivirus-based transient expression system in N benthamiana that is particularly suited to simultaneous expression of several proteins allowed expression of a MAb (6DB) known to protect animals from Ebola virus infection, at levels of 0.5 g/kg biomass (Chen et al., 2011). The same group also used the same vector system (described in detail here (Rybicki and Martin, 2014)) in lettuce to produce potentially therapeutic MAbs against both Ebola and West Nile viruses (Lai et al., 2012).

A more comprehensive investigation was reported recently, of both plant production of Mabs and post-exposure prophylaxis of Ebola virus infection in rhesus macaques (Olinger et al., 2012). Three Ebola-specific mouse-human chimaeric MAbs (h-13F6, c13C6, and c6D8; the latter two both neutralising) were produced in whole N benthamiana plants via agroinfilration of magnICON TMV-derived viral vectors. A mixture of the three MAbs – called MB-003 – given as a single dose of 16.7 mg/kg per Mab 1 hour post-infection followed by doses on days 4 and 8, protected 3 of 3 macaques from lethal challenge with 1 000 pfu of Ebola virus. The researchers subsequently showed significant protection with MB-003 treatment given 24 or 48 hours post-infection, with four of six monkeys testing surviving, compared to none in two controls. All surviving animals treated with MB-003 experienced insignificant if any viraemia, and negligible clinical symptoms compared to the control animals. A significant finding was that the plant-produced MAbs were three times as potent as the CHO cell-produced equivalents – a clear case of plant production leading to “biobetters”. A follow-up of this work investigated efficacy of treatment with MB-003 after confirmation of infection in rhesus macaques, “according to a diagnostic protocol for U.S. Food and Drug Administration Emergency Use Authorization” (Pettitt et al., 2013). In this experiment 43% of treated animals survived, whereas all controls tested here and previously with the same challenge protocol died from the infection.

In news from just prior to submission of this article, a report quoted as coming from the National Institute of Allergy and Infectious Diseases states that two US healthcare workers who contracted Ebola in Liberia were treated with a cocktail of anti-Ebola Mabs called ZMapp – described as a successor to MB-003 – developed by Mapp Pharmaceutical of San Diego, and manufactured by Kentucky BioProcessing (Langreth et al., 2014). Despite being given up to nine days post-infection in one case, it appears to have been effective (Wilson and Dellorto, 2014).

A novel application of the same technology was also used to produce an Ebola immune complex (EIC) in N benthamiana, consisting of the Ebola envelope glycoprotein GP1 fused to the C-terminus of the heavy chain of the humanised 6D8 MAb, which binds a linear epitope on GP1. Geminivirus vector-mediated co-expression of the GP1-HC fusion and the 6D8 light chain produced assembled immunoglobulin, which was purified by protein G affinity chromatography. The resultant molecules bound the complement factor C1q, indicating immune complex formation. Subcutaneous immunisation of mice with purified EIC elicited high level anti-GP1 antibody production, comparable to use of GP1 VLPs (Phoolcharoen et al., 2011). This is the first published account of an Ebola virus candidate vaccine to be produced in plants.

References

Chen, Q., He, J., Phoolcharoen, W., Mason, H.S., 2011. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Human vaccines 7, 331-338.

Lai, H., He, J., Engle, M., Diamond, M.S., Chen, Q., 2012. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant biotechnology journal 10, 95-104.

Langreth, R., Chen, C., Nash, J., Lauerman, J., 2014. Ebola Drug Made From Tobacco Plant Saves U.S. Aid Workers. Bloomberg.com.

Olinger, G.G., Jr., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., Morton, J., Pauly, M., Whaley, K.J., Lear, C.M., Biggins, J.E., Scully, C., Hensley, L., Zeitlin, L., 2012. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America 109, 18030-18035.

Pettitt, J., Zeitlin, L., Kim do, H., Working, C., Johnson, J.C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., Morton, J., Pauly, M.H., Whaley, K.J., Ingram, M.F., Zovanyi, A., Heinrich, M., Piper, A., Zelko, J., Olinger, G.G., 2013. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Science translational medicine 5, 199ra113.

Phoolcharoen, W., Bhoo, S.H., Lai, H., Ma, J., Arntzen, C.J., Chen, Q., Mason, H.S., 2011. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant biotechnology journal 9, 807-816.

Rybicki, E.P., Martin, D.P., 2014. Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants. Current topics in microbiology and immunology 375, 19-45.

Senthilingam, M., 2014. Ebola outbreak: Is it time to test experimental vaccines? CNN.

Wilson, J., Dellorto, D., 2014. 9 questions about this new Ebola drug. CNN.

* = which, despite their having commissioned from me, the good folk at “Viruses” an unnamed journal decided “…may not have substantial differences with the reviews you published recently” – and rejected.  I shall have revenge.  Oh, yes…B-)

Recombinant Bluetongue virus vaccines – or some, anyway

1 May, 2014
VIRUS-rota-200

General model of reo-like viruses. Copyright Russell Kightley Media

I picked up yesterday – via @MicrobeTweets’ Twitter feed – on a very useful list of papers in a “Virtual Special Issue” of Elsevier’s recent coverage of vaccines – for “World Immunization Week”. Great stuff, I thought to myself, as I browsed the list – and downloaded at least those that were Open Access, or which I can get via our Libraries’ IP range.

“Even better!”, I thought, as I saw a review entitled “Recombinant vaccines against bluetongue virus?”  A meaty, well-sourced review, I thought; good reading for me and my students / coworkers, and good meat for upcoming Introductions for papers yet to be written.  Indeed, it promised the following:

“The multiple outbreaks of BTV in Mediterranean Europe in the last two decades and the incursion of BTV-8 in Northern Europe in 2008 has re-stimulated the interest to develop improved vaccination strategies against BTV. In particular, safer, cross-reactive, more efficacious vaccines with differential diagnostic capability have been pursued by multiple BTV research groups and vaccine manufacturers. A wide variety of recombinant BTV vaccine prototypes have been investigated, ranging from baculovirus-expressed sub-unit vaccines to the use of live viral vectors. This article gives a brief overview of all these modern approaches to develop vaccines against BTV including some recent unpublished data.”

So, I parked the conveniently Open Access-ible window away on the side of my desktop, to be got back to with every expectation of delight.

Until I read it, that is: well-sourced it may be; excellent in its coverage, it is NOT.  In fact, apart from a brief discursion on subunit vaccines – concentrating almost exclusively on baculovirus / insect cell-produced proteins – it is almost exclusively concerned with live viral vectors for bluetongue proteins, and of poxviruses in particular.  Now, this is all very well, if that is what they work on – but to dismiss one of the potentially most exciting developments in recent Bluetongue vaccinology like this:

“VLPs of BTV have been also produced in plants recently using the cowpea mosaic virus and their use in a vaccination study produced no clinical manifestations in sheep after homologous challenge, although viremia was no [sic] evaluated (Thuenemann et al., 2013).”

- boggles the mind somewhat.  Really?  That’s all they have, compared to the screed immediately before it on baculovirus-produced antigens?  They get the expression system wrong – it is an Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana involving a Cowpea mosaic virus-derived enhanced translation vector – and neglect to mention that the VLPs produced are as good as anything produced in insect cells; will be FAR cheaper to produce, and WORKED AS WELL AS THE CONVENTIONAL ATTENUATED LIVE VIRUS VACCINE IN A CHALLENGE EXPERIMENT IN SHEEP.  True!

This is a big deal, folks, really: successful production of significant amounts of VLPs requiring simultaneous expression of 4 structural proteins of BTV-8 in plants AND their subsequent assembly, AND performing as well as the standard vaccine in an animal trial.  But no – not good enough for our review’s authors….

I must declare vested interests up front here: first, we work on plant-made recombinant Bluetongue vaccines; second, I and others in my group are co-authors of the paper whose lack of coverage I am aggrieved about.

But that’s not the point: what IS the point is that this review is a slipshod piece of work that damns our collective endeavour with faint praise, in community that might otherwise have been alerted to an alternative to the far-too-expensive-for-animal-use baculovirus expression technology.

Ah, well.  I suppose that’s what blogs are for B-)

Eat your vaccines

7 February, 2014

See on Scoop.itVirology and Bioinformatics from Virology.ca

Vaccines have been revolutionary in medicine, but why are they not used in some parts of the world and how can they be improved? …

Ouch! Wouldn’t it be great if instead of a jab with a needle, you could just eat a vaccine instead? Luckily, researchers at the University of California agree, and their attempts to use algae to produce an edible malaria vaccine is just one example of the many strides forward scientists are taking in vaccine research.

Ed Rybicki‘s insight:

I love these idealistic but naive statements about how plant-production-of-vaccines-will-let us-get-away-from-needles: very 1990s; a little out of touch with modern realities – unfortunately!

The facts are that any edible (read: oral) vaccine will have to be regulated as tightly as an injectable, in terms of dose and administration.

Really: giving too little OR too much; giving it too often or not often enough; giving a product that has not been QCed or checked for potency  after storage…is suicide, in the vaccine world.

Even if it IS safe enough to eat.

See on www.isciencemag.co.uk

Legends of Virology

31 January, 2014

I have been fortunate enough this week to be in Pretoria, at the first Animal and Human Vaccine Development in South Africa Conference (Twitter #AHVDSA): partly because it is a very timeous and necessary meeting to help to establish strategies for this purpose, and partly because there is a significant presence of some legendary figures of international and South African virology.

Marc van Regenmortel – who we count as local even if he lives in Strasbourg – helped Bob Millar and others at the University of Pretoria to organise this meeting. He also used the opportunity of having a bunch of old virological friends visiting him at the University of Stellenbosch’s STIAS to bolster the conference presentations.

So it was that we have Errling Norrby of Sweden with us; we have Fred Murphy of Ebola fame; Marian Horzinek of veterinary virology repute; Marc himself, our iconoclastic viral immunologist; Jose Esparza of the BMG and an eminent poxvirologist – and Jean-Marie Andrieu, an oncologist with an interest in tolerogenic HIV vaccines.

Local legends are present too: we have Daan Verwoerd, legendary orbivirologist and former Director of the venerable and distinguished Onderstepoort Veterinary Institute; Henk Huismans, who did the first molecular work on orbiviruses in the 1970s, and is still active; Bob Swanepoel, doyen of the African haemorrhagic fever viruses.

Good people.

Oh, and of course, me and Anna-Lise Williamson; Dion du Plessis of OVI; Lynn Morris of the NICD; Albie van Dijk of UNW; Glenda Gray of the MRC, among 150 delegates

A great meeting, all in all, and very timely, given the contents of the SA Governmental Bioeconomy Strategy document released recently.

20140131-120134.jpg

Legends alive: from left, Fred Murphy; Daan Verwoerd; Bob Millar; Henk Huismans; Errling Norrby; Marc van Regenmortel
20140131-120151.jpg

Jean-Marie Andrieu; Marc van Regenmortel – at a VERY good unofficial dinner

20140131-120211.jpg

Legends and friends at supper: Marc, Fred, Eric Etter (CIRAD); Jose Esparza; Marian Horzinek; Errling, Anna-Lise Williamson

Emergency response vaccines for H5N1 influenza in South Africa

1 November, 2013

Our group has been working for some time now – since 2006, in fact – on investigating the feasibility of providing South (and southern) Africa with emergency response pandemic influenza vaccines.  The research was initiated after the Virology Africa 2005 conference that Anna-Lise Williamson and I organised in the Cape Town Waterfront in November of that year – when a senior WHO official warned us in his talk that “…if a pandemic hits, you are on your own: no-one will give you any vaccine”.

A group of us sat down afterwards, and discussed the feasibility of looking at emergency response vaccine(s), given that we had no capability in the whole of Africa to make flu vaccines.  Anna-Lise and I put together a proposal, with the highly pathogenic avian H5N1 influenza A as a target, which was funded on a once-off one-year basis by the Poliomyelitis Research Foundation (PRF) here in SA for 2006 – and then again by the PRF as a three-year Major Impact Project  (MIP) from 2008-2010, and subsequently to a lower level by both the PRF and the Medical Research Council of SA.  What made it all the more impressive for a South African project was that we had proposed expressing a protein-based vaccine in plants – quite a revolutionary prospect at the time, but something that followed on from the highly successful production of Human papillomavirus virus-like particles by transient expression in Nicotiana benthamiana by  James Maclean, working as a postdoc in our lab at the time.

However, some of the most important work was done early: James was very quick to get the haemagglutinin (HA) gene for the A/Vietnam/1194/2004 strain of H5N1 synthesised by GeneArt in Germany, and cloned into the same Agrobacterium tumefaciens plant expression vectors from Professor Rainer Fischer’s lab in Aachen, Germany, that had been used for HPV.  His initial work showed that large amounts of HA protein could be produced, both as soluble protein which lacked a membrane localisation domain, and as the membrane-bound form.  This work formed the basis for a patent application on the transient expression of H5 HA that has now been granted.

Subsequently, when the PRF MIP started, we employed Dr Elizabeth (Liezl) Mortimer and Ms Sandiswa Mbewana to further the work: with collaborators from the National Institute for Communicable Diseases (NICD) in Johannesburg and State Veterinary Services in Stellenbosch, this investigated transient and transgenic expression of soluble and membrane-bound forms and their immunogenicity, as well as a DNA vaccine consisting of the HA genes cloned into Tomas Hanke’s pTH vector.

The protein expression work was published in 2012, as well as being featured here in ViroBlogy at the time.

Image

What we had managed to show was that we could get excellent production of the H5 HA in both soluble and bound forms, and that especially the membrane-associated form of the protein was highly immunogenic, and elicited antibodies in experimental animals that were appropriately neutralising, indicating its suitability as a vaccine candidate.

Now this all happened despite our running out of money AND Liezl leaving to have a baby…and then we managed to get another paper out of the work, this time on the DNA vaccine side of things.

Image

We pitched this at the South African Journal of Science as a vindication of the faith in us by exclusively South African funding agencies – and managed to get the cover of the issue in which it appears, thanks to the truly excellent artwork of Russell Kightley from Canberra, Australia.  Front AND back covers, as it happens…!

Image

Image

And this all made Sandiswa Mbewana, who is now a PhD student on another project, very happy:

Image

This all came in excellent time to mark the establishment in the Department of Molecular and Cell Biology at the University of Cape Town, of a new URC Research Unit: namely, the Biopharming Research Unit (BRU).

BRU

Watch this space…B-)

Plant-Based Antibodies, Vaccines and Biologics 5, Part 5

3 September, 2013

Session 6:Vaccines II

This was SUPPOSED to open with a report from Medicago Inc, on ‘Developing plant-made influenza vaccines: From discovery to commercial scale production’  – but didn’t, because they were all shaken up (in a good way) by having been effectively bought by Mitsubishi Tanabe Pharma Corporation, and no-one came.

This is a success story in its own right, however, as their recent and highly successful activities in the areas of making influenza vaccines and human rotavirus VLP-based vaccines in plants marked them out as a target for acquisition by Big(gish) Pharma – for which we commend them.

It is sad, however, that their only presence at the conference was on the back of my windbreaker B-)

Konstantin Musiychuk (Fraunhofer USA) was the first up, then, speaking on ‘Preclinical evaluation of VLP-based malaria transmission blocking vaccine’.  He described how there are 3 types of intervention that may work with malaria: these are at the pre-erythrocytic, blood stage, and transmission blocking stages of infection.  Antibodies to Pfs48/45, Pfs230 proteins block the fertility of or destroy the macrogamete.  Pfs25 and 28 Abs block the ookinete to oocyst developmental phase; all potentially block transmission.  Accordingly, they expressed these as fusions with the alfalfa mosaic virus (AMV) CP with mutation(s) to prevent glycosylation.  The Pfs25 protein was the best candidate; they cloned a mutated version (glyc-), fused at the N-terminus to AMV CP, and expressed via their TMV-based “launch vector” after vacuum infiltration.  He noted that the fusions have full-length and proteolysed products – which is needed for VLP formation as native CP is needed to avoid steric hindrance in assembly.  They obtained nice particles as shown by EM, showing surface decoration.  Dynamic light scattering [Ed: must get me one of those…] results show a nice tight range of 17nm particles.

They used the products with/out Alhydrogel as adjuvant, IM in mice: they got good titres maintained >170 days, with  2x inoculation.  They diluted test sera with naive human serum and used this to membrane-feed mosquitoes, then after 1 week dissected them and assayed for parasites: oocyte counts in mid-gut reflected efficient blocking of acquisition.  The adjuvant+ doses worked well down to 0.1 ug (100%).  Single doses of 1, 5 or 25 worked 100% as well.  After 6 months, 5 and 25 ug doses still gave 90%+ blocking.

They made GMP lots, very pure:  2 doses at 0 and 21 days resulted in complete blocking down to 0.3 ug, with >99% blocking after 40+ days.  Tox studies were fine, although the  Alhydrogel apparently causes some side effects.   Scaleup from 1-50 kg showed no changes in the Ag.  The Phase 1 trial is expected in Q3 2013.

This was most impressive: it is to be hoped that the promise is maintained!

Yoseph Shaaltiel (Protalix Biotherapeutics, Israel) spoke on Protalix’s new product: this was alpha galactosidase-A, for the treatment of Fabry disease.  This is an X-linked lysosomal storage disease that results in massive storage of glycolipid Gb3, in cells, in the vascular system and elswhere, which impairs the tissue of the heart and affects kidney and other organ function.  There were worse consequences than with Gaucher disease, while it was less obvious.  The current therapy was seen as being bad, and patients had reduced life expectancy.  There were 2 therapeutic enzymes on the market: these were Agalsidase Alfa and Beta; these were very inefficient and expensive, so cost benefit was very limited.  1/2 life in blood was normally just a few minutes, and the proteins were very immunogenic.

Protalix aimed at making a biobetter: this was made in tobacco cells cultured in bags (they used Icon vectors, so could not work in their favoured carrot), by cocultivation with Agrobacterium and then killing the bacteria.  The protein subunits were PEGylated to reduce immunogenicity and x-linked using bis-NHS-PEG.  This gave improved stability, longer circulatory 1/2 life, enhanced activity in target organs with similar to improved kinetics, so lower dosing and longer intervals between doses were possible.  Yields were good too, and they could make the enzyme very pure.  The product had the same kinetics as the commercial products with better activity over a wide pH range.

As far as glycosylation was concerned, the commercial product had very complex glycosylation, while the plant-made product’s profile was very consistent and simple.  It had an enhanced circulatory 1/2 life, of 581 vs 13 min, and also had higher activity in target cells – heart, kidney – over time.  Yoseph noted that the  patents on the enzyme(s) were limited to CHO cell production, meaning they had a useful window to exploit.

A comment from Jim Carrick was that the FDA was not interested in PEGylated products, as this could lead to vacuolation of kidneys in the long term.  Yoseph said their product was not the same, as normally PEGylation added 20-40 kDa, whereas theirs was a much shorter x-linker.  Their product was, moreover, already in clinics, as the  FDA had said they should move straight to patients rather than testing it in healthy people.

Lydia Meador (Arizona State University) reported on their lab’s HIV vaccine candidate, made in plants and also vectored by NYVAC-KC delB19 poxvirus.  They had previously shown that a CTB-HIV membrane proximal region (MPR) fusion vaccine resulted in Ab that stops transcytosis of HIV by Ab; she noted that live vectors enhance T-cell responses compared to subunit vaccines, so a combination would be a good idea.

Accordingly, they had cleverly produced whole HIV Gag and a deconstructed gp41 – stable Gag transgenics, and transiently-produced dgp41 – in the same plants, to make 100nm VLPs.  While VLPs are highly immunogenic alone, they wanted to prime with the NYVAC and boost with plant-made antigen.  They obtained good p24 Ab responses with NYVAC and the VLP boost; gp41 less so.  In terms of mucosal immunity, they saw the IgA response against gp41 was significantly higher in the NYVAC+VLP combination, as were CD8+ T-cells.  She noted that the anti-NYVAC titre was high after 3x doses.  In response to my question, she did not know if the NYVAC vaccine made VLPs in mice – which it may not do, even if it works in plants, due to different protein requirements for budding in mouse vs plant cells.

Daniel Tusé (Intrucept Biomedicine, Kentucky) – a company founded with Kenneth Palmer – spoke on ‘Safety and efficacy of plant-produced Griffithsin for antiviral indications’.  He noted that while griffithsin was an excellent anti-HIV microbicide, it was also a reasonably broad-spectrum antiviral lectin, as it was effective against the recently-emerged MERS CoV and  influenza viruses.

The protein was hard to make from seaweed, and E coli was useless for production; however, they got g/kg in tobacco via conventional rTMV vectors, and now even better with Icon and Nomad vectors.  KBP had manufactured it to near-GMP production standards, again at g/kg yields, with product recovery at 30% from leaves and 50% from leaves + stems, to a final purity of 99.8%.  The potency was the same as the alga-derived product, and they had 100s of gm of product.

As griffithsin binds HIV with very high affinity, its primary use would be as a topical microbicide, to prevent transmission of HIV and HSV; to prevent coronavirus infections, and to act on chronic virus infections.  The protein is not mitogenic on PBMC and does not activate T cells; it does not produce inflammatory cytokines in human PBMC, unlike cyanovirin, which had a much worse proinflammatory profile.  The epithelial toxicity was also very low, which was in contrast to some well-publicised agents which had disastrously resulted in increases of HIV acquisition in women using them.

A carbopol-based gel was found to have the best drug-release kinetics, so was adopted for formulating the product for use.  This protects mice against genital herpes: herpes has 2x the risk of infection per exposure compared to HIV infection.  The gel has broad specific activity against coronaviruses too, to a wide spectrum of viruses from human, cow, chicken and pig.  It could protect mice against SARS CoV, if given intranasally at 2 doses/day.

The protein also has uses in prevention of infection in the organ transplant area, eg against hepatitis C virus (HCV): it prevents infection of Huh-7 cells by cell-culture derived HCV, and partially protects hepatocytes from viral spread in vivo.  If injected in animals it persists, and maintains an anti-HIV activity.  It is immunogenic, but only weakly so, and Ab to it don’t neutralize its effects.  Their lab was using rational design to take out T-cell epitopes without affecting antiviral activity.

Daniel stressed that this is a new drug, which can be preferentially be made in plants at high yield, with very low cost of goods; that it was effective and safe.

Hugh Haydon (KBP) mentioned that the cost of goods was “pennies/dose”.

Session 8:

This was an interactive discussion session, addressing the topic ‘Commercialisation of molecular pharming products – objectives and targets for the next 5 years’.

The panel: from left - Hugh Haydon, Kevin Whaley, John Butler, Scott Deeter, Einat Brill

The panel: from left – Hugh Haydon, Kevin Whaley, John Butler, Scott Deeter, Einat Brill

Hugh Haydon of Kentucky BioProcessing (KBP), , speaking on behalf of the new MAPP, KBP and Icon collaboration, addressed product selection.  He noted that MAPP was responsible for product development, Icon for technology development and purification, and KBP for large-scale manufacture.  They had spun out Solmab as a collaborative vehicle for production of MAbs for infectious disease therapy.

He described their product selection rationale: this was based on

  • proof of concept data
  • platform suitability
  • capacity for dual use of product
  • availability of capital
  • speed of the regulatory process
  • regulatory success rate
  • scalability of existing infrastructure

Accordingly, they had selected a “biobetter” of Synagis, and an Ebola MAb cocktail.  The Synagis equivalent was better due platform parameters, known clinical parameters, the fact there were established markets which can grow, government and NGO humanitarian interest, and potential adaptation to other viruses.  For Ebola, they had a 3 MAb cocktail that was known to work, strong government interest (for a stockpile), a more rapid regulatory pathway, and a tropical disease voucher from the FDA.  He pointed out that these products won’t make blockbuster status, but are appropriate for small companies like theirs.

Kevin Whaley (MAPP) spoke on how we needed therapeutics that were multipurpose (disease, indication) as well as multi-vaccines.  The attributes of the new biologics were multi-use, speed of production, scale of production, and cost advantage – especially for global health products costing <$US10/g, at scales of >10K kgs, with increased efficacy (pathology, cancer), increased acceptability and access.  He noted that all modern paediatric vaccines are multi – this saves visits to clinics, especially in developing countries.

Scott Deeter (InVitria) noted that the biologics market was edging up to being worth $US125 billion – and reckons progress with plant-produced products is excellent.

John Butler (Bayer) thinks we are still looking for suitable products!  He was of the opinion that initial targets were too difficult (eg NHL – and flu??!), and that improved product characteristics must benefit from being plant-made.  He was adamant that PMP must not compete on price with other platforms – because there was no such thing as a bottleneck in fermentation capacity world-wide, and established industry could just cut prices if they wanted to.  He spoke of real and perceived hurdles:

  • regulatory pathway isn’t a hurdle
  • plant vs human glycosylation is not either, as plant-specific glycans were not more immunogenic than human

Real risks were that:

  • there were well-established alternatives
  • the plant-made product industry was overstretched in terms of resources

Einat Brill (Protalix) addressed their future strategy:

  • new biologics for orphan indications (clinical trials were smaller, one needed only several 10s kg a year for an entire disease cohort)
  • recombinant vaccines
  • hard to express proteins that were best expressed in plants

ApApproved biologics:

  • Biobetters of commercial products
  • They would continue to establish PMP regulatory environment as a viable route for biologic drugs development
  • Biobetter efficacy: longer circulatory half life for favourable clinical outcome
  • regimen frequency: longer treatment intervals due to increased drug stability, with lower dosing
  • Changing administration route (eg: oral vs injectable): helps to improve patient compliance

This was an excellent session, if only to hear how people who have been involved in getting PMPs to the market viewed the prospects for the industry – and it appeared favourable, despite John Butler’s caveats.

Plant-Based Vaccines, Antibodies and Biologics 5, Part 4

2 September, 2013

PBVAB 5 Part 4

Sessions 5 – 8

The fifth session on Day 2 was “Antibodies 1” – and who better to kick off, than Rainer Fischer (RWTH / Fraunhofer Institute, Aachen), talking about Pharma-Planta – The European project to introduce plant-derived monoclonal antibodies to the clinic’.

One of the most impressive features of the FP6 PharmaPlanta project was its sheer size: 28 academic institutions were involved over 7 years, at a cost of €12 million plus €3 million from the Fraunhofer Institute in Aachen.  Their mission was to move molecular farming beyond proofs of concept, and to develop candidate products.  They selected the anti-HIV-1 subtype B MAb 2G12 as their final candidate, but also developed MAbs to rabies and some vaccine candidates.  Importantly, their IP had a Humanitarian Use Commitment: knowledge created was made freely available for humanitarian purposes.

They had a total of 39 postdocs and 8 students trained; they produced 200 peer-reviewed publications consisting of 150 research papers and 50 reviews, and a spin-out company.  The project also helped to develop a South African plant-made MAb production platform.  Their plant-produced 2G12 was the first plant-made MAb in human clinical trials – and went from gene to clinic in just 7 years.  They had also very materially helped the development of the regulatory regime in Europe, from the viewpoint of pharmaceutical guidelines and environmental safety for PMPs.

Rainer Fischer

Rainer Fischer in full flow

The final yield figures for 2G12 were 5 g of 97% pure MAb from 240 kg of transgenic tobacco, with a recovery of 55%.  The product had a better glycosylation homogeneity than CHO cell-produced 2G12.  In clinical trials of the MAb used as a vaginal microbicide, the product was safe and well tolerated with no serious adverse reactions.  There were no anti-Abs found in serum or in the vagina, with no systemic absorption.  The MAb survived for 8 hrs in the vagina, meaning it had serious potential as a microcode.

The project resulted in great human capital, a manufacturing facility at the Fraunhofer IME, and a number of important follow-on projects.  It also opened bottlenecks in regulatory practice, and in clinical trials of PMPs.  There was a pipeline of additional product candidates, eg anti-rabies MAbs.

Important lessons from the project were the following: one should focus early on on the plants used, the expression technology, the threshold level of production, realistic timelines, the plant line and purification process, production issues, QC stability, regulatory contract – FIND A CLINICAL SPONSOR!, set up contractual framework, draft specifications for drugs, contact authorities in countries for manufacture and testing.

Issues such as smart product selection, synthetic biology/host cell line engineering, glycan/protease profile, hi-throughput cloning, selection of elite lines, scale-up automation / vertical farming, downstream processing, regulatory approval had also surfaced, and were important.

For the future, a fully automated vertical farm unit  for seed development was going to come on stream.  They would move from niche production to mainstream production, taking advantage of economies of scale.  Other developments could be designing an optimal host cell line, with fully human glycosylation, and site-directed transgene integration.

Some day someone should write a book about this endeavour – and I think it should be Rainer.

Larry Zeitlin (MAPP Biopharmaceutical) spoke next, on producing monoclonals against respiratory syncytial virus (RSV): the reason for doing this is that RSV is a major pathogen among small children worldwide, and while there are MAb-based therapeutics (eg: Synagis, from MedImmune), with sales in the order of USD 1 billion annually, these cost around USD 5 000 for one treatment for one child – and premature infants or cardiac / respiratorily challenged children required 4-5 monthly doses per RSV season.  Additionally, infection with RSV in the 1st year of life is associated with development of asthma later, so paediatricians were wanting to treat a much wider spectrum of children.

Accordingly, MAPP was making a Synagis equivalent via Icon vectors in N benthamiana for half the cost of goods, which had the same neutralisation ability and same affinity but a different glycosylation profile and shorter half-life.  When tested in cotton rats it was identical in pharmacokinetics and worked as well as Synagis.  An attempt to reduce the interaction of the IgG1-based MAb with the immune system by changing the subtype to IgG2 failed in rates even though it was neutralising, possibly due to there being less ADCC.  Larry mentioned that they could engineer the Fc region with point mutations to significantly extend the half life – and then use this as a scaffold, possibly for some of their other products.

Michael McLean (Univ Guelph, Canada) described his group’s work on a HIV Ab cocktail theoretically capable of neutralising 99% of HIV strains – this was for PlantForm Corp, who had a mandate to produce biosimilars and novel biologics using plants.  The HIV project was focused presently on demonstrating anti-HIV functionality, and at improving glycosylation profiles of a cocktail of b12, 2F5 and 4E10 broad-spectrum anti-HIV MAbs.

They worked with BeYDV-derived, 2-replicon vectors expressing whole MAbs, as well as their own vectors, using the Steinkellner group glycosylation pathway engineered plants.  With 9 days maximum expression period  they could get 1 g/kg maximum yields.  All the MAbs worked fine, with  similar activity in in vitro HIV pseudovirion neutralisation assays.  Using the deltaFX N benth line, they get uniform glycosylation – and add Gal using their own vectors.

Shawn Chen (BioDesign Inst, Arizona State Univ) described their work on a humanized West Nile virus (WNV) therapeutic MAb which protected mice from WNV infection.  They wanted blood-brain barrier (BBB)-permeable bifunctional Abs to extend efficacy, presently limited because of the barrier.  They got 0.3 – 0.5 g/kg yield of a bifunctional MAb which bound the BBB endothelial receptor and virus Ag, using Icon and BeYDV vectors, and showed endocytosis into brain cells.  He also mentioned that they could “tune” glycoforms to change ADCC.

IMG_0140

Victor Klimyuk (Icon Genetics GmbH, Germany) presented on ‘Biogeneric antibodies made in plants’: these used a generic IgG1 constant region gene codon-optimised for plants, with add-on variable (V) regions derived from other Abs of different types and specificities.  The first product had been the non-Hodgkin lymphoma personalized MAbs: they had done glycotyping of each NHL MAb, all with the same H but diff L chains, to show these were differently glycosylated – and that all the idiotypes were expressed at very different levels.  Interestingly, expression levels had little to do with occupancy of glycosylation sites – and this occupancy could be tuned by directed point mutations.

They had made analogues of trastuzumab and herceptin, etc – and noted that herceptin analogues differed in potency, and wt plants produced lower levels than their engineered plants.  Rituximab analogues were all the same as the original MAb at day 0 of treatment, but MAbs with no fucose were best at persistence – equal to the original.

Vikram Virdi (VIB, University of Gent, Belgium) described passive immunisation of piglets against enterotoxigenic E coli (ETEC) using llama-derived antibodies produced in Arabidopsis.  This was useful in that it extended the maternally-derived passive immunity.  Their product was a “porcinised camellid Ab” against the major adhesion molecule of ETEC, which should survive the digestive tract.  They made MAbs based on a camellid Vh gene fused to IgG and IgA Fc regions, and expressed them in seeds for a piglet feed challenge.  They got a maximum of 15% TSP expressed in seed, 3% of seed weight.  By triple transformation with the 3 genes required for an IgA analogue (Vh:Fc, J chain and secretory component) and then selfing and breeding plant lines, they got in planta assembly of a sIgA analogue (0.2% seed weight).  This worked in inhibiting attachment of  bacteria, so they upscaled production and tested a cocktail of IgG vs IgA types.  The latter was best, with a swift decline of bacterial shedding with a 4  x lower dose than for IgG.  There was also a better weight gain for IgA treated piglets.

Thomas de Meyer (VIB-PSB/University of Gent) compared production of bivalent camellid VHH-derived MAbs in Arabidopsis, N benthamiana and Pichia pastoris, given that the VHH Fc enhanced functional affinity, and led to longer serum 1/2 life, and was a convenient protein tag. They compared VHH and VHH-Fc MAbs with 4 fusions, including anti-globulin, anti-albumin, and anti-GFP.  The products were stable in seed production (with KDEL) in Arabidopsis and also N benthamiana, and  Pichia secreted the products.  They got yields of 1.5 – 27% TSP, 0.1 to 0.82 g/kg in plants, and with Pichia, 15 – 30 mg/l culture.

The MAbs had different size profiles from the different hosts, though all were bivalent VHH, and N benthamiana and Pichia products were fully glycosylated.  Several of the Fc-type MAbs outperformed the VHHs in ELISA.

Overall, it was obvious that expression of a wide variety of antibodies in plants is a maturing technology: yields are high, of antibodies whose glycosylation and retention profiles can be handily engineered, and which perorm equivalently or better than their conventional homologues in in vitro and in vivo assays.

Go Green, he said, not quietly…B-)

PBVAB 5 – Part 3

21 August, 2013

PBVAB 5 Verona, June 2013 – Part 3

Technically, Sue Huddy’s piece should have been Part 3; however, it reports things that happened after what I am reporting on, so I’ll keep that label!

This post will report on Sessions 3 & 4, namely, Technology Advances and Perspectives.

I opened Session 3 with a talk on ‘Virus-derived ssDNA vectors for the expression of foreign proteins in plants’, focusing mainly on geminiviruses (naturally).  I wrote this a couple of years ago as a chapter for a book which seemed to not be forthcoming; however, I was assured during my talk by Yuri Gleba – the co-Editor with Kenneth Palmer of a “Current Topics in Microbiology and Immunology” issue on “Plant Viral Vectors” – that this offering is now in fact available, so here’s a link for anyone who wants to buy it.

Current Topics in Microbiology and Immunology 2011,

Virus-Derived ssDNA Vectors for the Expression of Foreign Proteins in Plants

Edward P. RybickiDarrin P. Martin

Plant viruses with ssRNA genomes provide a unique opportunity for generating expression vehicles for biopharming in plants, as constructs containing only the replication origin, with the replication-associated protein (Rep) gene provided in cis or in trans, can be replicationally amplified in vivo by several orders of magnitude, with significant accompanying increases in transcription and expression of gene(s) of interest. Appropriate replicating vectors or replicons may be derived from several different generic geminiviruses (family Geminiviridae) or nanoviruses (family Nanoviridae), for potential expression of a wide range of single or even multiple products in a wide range of plant families. The use of vacuum or other infiltration of whole plants by Agrobacterium tumefaciens suspensions has allowed the development of a set of expression vectors that rival the deconstructed RNA virus vectors in their yield and application, with some potential advantages over the latter that still need to be explored. Several modern applications of ssDNA plant vectors and their future potential will be discussed.

I noted that several firms are already using geminivirus-derived expression technology – like Kentucky Bioprocessing, who offer use of it as a service, and Medicago Inc, who use it in manufacturing vaccine products – and that it has considerable potential for improvement.  There is also the possibility of using other ssDNA virus-derived vectors, including from bacteria.

E.V. Sheshukova (N.I. Vavilov Institute of General Genetics RAS, Moscow) followed up with an account of how the use of antisense RNA to plant death factor (PDF) could modulate PDF level so as to avoid the necrotisation caused by rapid protein over-expression.  Their group used a TMV-based vector to co-express an antisense with the gene of interest, and got 4-5-fold increase in protein expression, equivalent to using the silencing suppressor p19 from a tombusvirus.

Diego Orzaez (IPMCP-CSIC, Valencia, Spain) spoke next, on the same technology I have previously described (with beautiful pictures from Diego) here: that is, the enabling of tools for multigene engineering of plants – and specifically in this case, the elegant use of superinfection exclusion phenomenon seen with RNA plant virus-derived vectors that are capable of movement, for the expression of polyclonal antibody mixtures in plant leaves.  They had successfully shown expression of 300+ individual clones from a camel VHH clonal library derived against a mixture of 3 snake venoms, in a mosaic on a single leaf.  This was seriously impressive for me: imagine, polyclonal “sera” from a leaf!

Diego noted that the FDA allows the 2-animal rule for products like antivenin, and things used for biodefence: that is, an efficacy trial in an animal, followed by Phase 1 trial in humans (=safety).  This could help expedite approval of such products.

We discussed the paper previously blogged on from this group in Journal Club today, incidentally, to much appreciation of the truly excellent work, and the colour Figures.  Thanks, Richard!

Reza Saberianfar (Agriculture and Agri-Food Canada, Ontario) described their investigations of protein body biogenesis in N benthamiana.  They had looked mainly at hydrophobin and elastin fusion proteins, in order to overcome the joint bottlenecks of inadequate accumulation, and difficulties in purification of recombinant proteins from plants.  He noted that hydrophobin and elastin PBs were different sizes: they had used protoplasts of infiltrated leaves and confococal microscopy and Imaris software to find every PB in individual cells, to determine that  shows hydrophobin-based PBs were 1-2 um, and ELP-based were 2-3 um in diameter, for the same amount of protein.  PBs made from  hydrophobin and ELP-linked proteins shared the same ER origin, but Zera-based PBs had a different origin and Zera fusions did not need a KDEL for ER retention.  An interesting observation was that PBs could form in the ER in the absence of fusion tags if expression levels were high.  One could also increase the expression of other proteins by coexpressing them with a fusion protein, as they get incorporated into PBs anyway – eg: EPO.

Lauri Reuter (VTT-Technical Research Centre, Finland) continued in the theme of fusion proteins with a talk on the production of hydrophobin fusions in tobacco BY-2 suspension cultured cells.  It was interesting to hear that WAVE bioreactors did not work well because they did not shake fast enough, but that conventional steel bioreactors did – with capacities of 20 – 600 litre, and even up to 20 m3.  The cells are apparently surprisingly tolerant to shear stresses, and yields of GFP::hydrophobin fusion from 600 litre reactors were as good or better as from a 50 ml shake flask – at 300 mg/litre.  Purification was simple, in that reactors could be pumped out onto a filter, and the cell “cake” pressed dry – for subsequent lyophilisation and storage at room temperature, for example.  French pressing of fresh cells was also an option.  Hydrophobin fusions allowed aqueous 2-phase separations, for simple and rapid enrichment.  Inclusion of a Tobacco etch virus self-cleaving motif allowed removal of the hydrophobin.

hphobinThe “Perspectives” Session was notable for two talks, and a proposal: the latter was by Julian Ma for a “Society for Molecular Farming”, which was well supported and will probably kick off sometime this year.

Jim Larrick (Panorama Research, Mountain View, California) gave a typically eclectic, wide-ranging and highly enthusiastic talk on ‘Anti-fragility: Big picture issues in pharmaceutical development’.  He used the “Black Swan” analogy repeatedly to explain how the enterprise funding and pharma research sectors embodied fragile or anti-fragile thinking – with the observation that it was easier to resist black swans (eg: the unexpected) with a raft of small projects, than to have a few big ones.  He also pointed out that the NIH liked big projects – and that a useful alternative name for them was “Not Invented Here”!  Right up there with “Not Real Funding” as the alternative name for our National Research Foundation….

IMG_0133

Matthew Paul (St. George’s University of London) presented a set of 15 case studies of commercial paths to introducing molecular farming, which was very interesting to us academic types.  More interesting was the fact that while innovative and protectable technology and products were important to start-ups, the majority of successful ones had their basis in platform development – and the average time from platform to product identification was about five years.  Venture capital firms were considered too greedy for early-stage start-ups, but their involvement later led to stability as their partnering was long term.

Another interesting feature was that many of the successful ventures sold “side products”: for example, Ventria sold cytokines and cosmetic formulations, while KBP sold cell culture reagents.  Several also licenced out technology platforms, but the revenue was not held to be so good.

There were three main indicators of success:

  • Management quality
  • A good lead product
  • Having a panel of products

IMG_0135A good strategy to stay alive was “maximum income / minimum burn” – and he held up the example of Medicago in this regard.  He noted that in the absence of major investment from Big Pharma, Phase 2 trial success was the driver for commercialisation.

PBVAB 5 Verona June 2013: Session 7

3 August, 2013

Suzanne Huddy, a postdoc in our lab, kindly took some notes in a session I moderated at the 5th PBVAB in Verona this year.

Little did she know this is just my way of easing her in to doing this more often…B-)  Thanks, Sue!

Session 7: Manufacturing and Production Systems Developments

Moderator: EP Rybicki

Andreas Schaaf from Greenovation Biotech GmbH presented on “BryotechnologyTM en route to the clinic”, highlighting a production platform based on the moss Physcomitrella patens.  The overriding advantage of this system is that the moss is haploid and therefore genome modification is fairly straight forward with timelines for modifications similar to that of yeast systems.  Physcomitrella patens is also fairly unique since it has a very high occurring rate of homologous recombination (HR).  These traits along with the fact that the genome is sequenced and annotated allow fairly simple customization of the genomic background.  Using this, they have glyco-engineered strains and have removed plantized glycosylation completely.

Other than the products mentioned on their website (www.greenovation.com), they are currently working on α-galactosidase for treating Fabry disease.  Fabry disease is a rare genetic lysosomal storage disorder which results in the accumulation of lipids in the kidney, autonomic nervous system and cardiovascular system cells.  They are also working on the production of recombinant human β glucocerebrosidase for the treatment of Gaucher disease.  Interestingly, these are the same products produced by Protalix Therapeutics.

Stefan Schillberg from the Fraunhofer IME presented on “Co-MoFarm- Contained molecular farming: Controlled contained systems for high yield consistency”.  The CoMoFarm project has been funded for 3.5 years under the European Commission 7th Framework programme.  This project focused on the development of high-yielding plant-based production systems for recombinant proteins.

The presentation initially contrasted the production capability of the various plant platforms employed by this group using both HA (influenza hemagglutinin) and the human M12 antibody as protein products.  The production platforms included Arabidopsis and rice suspension cells, tobacco plants, roots and suspension cells, and moss suspension cultures.  The results presented highlighted the fact that one production platform is not necessarily optimal for all recombinantly expressed proteins, although the traditional tobacco leaves and BY-2 suspension cultures did produce the highest expression levels.  By further optimization of cultivation parameters (including media components), expression levels could be increased by up to 30 fold.  The presentation also showed that expression could also be improved by co-expression of the target protein with a fluorescent marker, DsRed.  In short, this allows the development of higher expressing lines through the non-invasive selection single elite expressing cells by flow-cytometry.  Stephan Schillberg also presented on the groups development of non-invasive monitoring systems for plant cell health and productivity.

The presentation was ended with a comparison on the cost of production of M12 antibody in either tobacco plants or BY-2 cells grown in 200 L bioreactors.  While the cost of producing this product in tobacco plants was less per gram of the product, the time for production in BY-2 cells was much shorter.  Details of the costing can be found at http://comofarm.org/useruploads/files/CoMoFarm_2013-6.pdf, where CoMoFarm have kindly made the presentation given in Verona available.

Pascal Drake from St. George’s University of London presented on “Hydroponic cultivation of tobacco for the production of recombinant pharmaceutical proteins by rhizosecretion”.  This presentation looked at the production and optimization of antibodies and Cyanovirin-N (CV-N) (a cyanobacterial protein which displays virucidal activity) in hydroponically cultivated tobacco plants.  Data was shown that suggested the inclusion of PGRs (plant growth regulators) and a nitrate source in the hydroponic medium could increase the concentration of the protein of interest in the medium.  Hydroponic cultivation has some advantages over traditional cultivation of tobacco plants.  Plants are cultivated in chemically defined media, therefore there is better control over the process and in this way this system approaches cell fermentation processes.  Additionally, fully processed secreted proteins can be harvested over the lifetime of the plant and purification can be simplified since the medium does not contain as many proteins as a whole leaf extract.  A “nifty” way of doing a western blot was also shown- basically, transgenic plants are germinated on nitrocellulose paper; this paper can then be used directly for a western blot since the protein of interest would have been secreted directly from the roots of the plant onto the membrane.  After development of the blot, the presence of the protein is seen in “root-shaped” pattern.

Bertrand Magy from the Institute of Life Sciences at the University catholique de Louvain, Belgium presented on the “Development of suspension cells as a competitive production system for antibodies”.  This research looked at designing an optimized antibody scaffold that can be combined with different variable regions in order to produce high levels of functional antibodies.  Initially, the expression of different IgG isotypes (human, rat and mouse) with the same variable region was investigated in tobacco and Arabidopsis thaliana suspension cells.  Bertrand showed that while antibodies accumulated in the extracellular medium, degradation occurred according to the isotype.  In this case, A. thaliana was also shown to be the better producer.  As is the case with many other cell suspension-based expression, the yield of antibody could be optimized by manipulating the growth medium.  Levels of antibody production of >30 mg/L could be achieved.


Follow

Get every new post delivered to your Inbox.

Join 533 other followers