More Surprises in the Development of an HIV Vaccine

14 November, 2014

More Surprises in the Development of an HIV Vaccine

In the current issue of Frontiers in Immunology, Jean-Marie Andrieu and collaborators, report results from non-human primate experiments designed to explore a new vaccine concept aimed at inducing tolerance to the simian immunodeficiency virus (SIV) (1). This approach, which is significantly different from other vaccine concepts tested to date, resulted in a surprisingly high level of protection. If the results are confirmed and extended to the human immunodeficiency virus (HIV), this approach may represent a game changing strategy, which should be welcomed by a field that has been marred by mostly disappointing results.

 

HIV Graphic from Russell Kightley Media

 

Source: journal.frontiersin.org

This is a commentary by two well-respected friends of mine on a very surprising result published by the Andrieu group recently, which seems to have been ignored by the mainstream HIV vaccine world.

This is not surprising, in that Andrieu is an outsider in this field – he is a cancer researcher – but is typical of the disappointing tendency in science to ignore contributions from outside the various "Golden Circles" that exist for various specialties.

Something that should elicit interest, though, is that this group has shown that a previously obscure 

"…population of non-cytolytic MHCIb/E-restricted CD8+ T regulatory cells [that] suppressed the activation of SIV positive CD4+ T-lymphocytes".

This is interesting because Louis Picker’s groups’ recent findings, announced at the recent HIVR4P conference in Cape Town, highlighted the involvement of MHC-E proteins in what amounted to a cure of SIV infection in macaques by a modified Rhesus cytomegalovirus (RhCMV) HIV vaccine vector (see here: http://www.iavireport.org/Blog/archive/2013/09/13/cmv-based-vaccine-can-clear-siv-infection-in-macaques.aspx). 

I tweeted at the time:

"Universal MHC-E-restricted CD8+ T cells – break all the rules for epitope recognition"

Could this be a link between the two mechanisms – both from way outside the orthodoxy, I will point out?

It will be interesting to see.

See on Scoop.itVirology News

Ethical dilemma for Ebola drug trials

13 November, 2014

Public-health officials split on use of control groups in tests of experimental treatments.

With clinical trials of experimental Ebola treatments set to begin in December, public-health officials face a major ethical quandary: should some participants be placed in a control group that receives only standard symptomatic treatment, despite a mortality rate of around 70% for Ebola in West Africa?

Two groups planning trials in Guinea and Liberia are diverging on this point, and key decisions for both are likely to come this week. US researchers meet on 11 November at the National Institutes of Health (NIH) in Bethesda, Maryland, to discuss US-government sponsored trials. A separate group is gathering at the World Health Organization (WHO) in Geneva, Switzerland, on 11 and 12 November to confer on both the US effort and trials organized by the WHO with help from African and European researchers and funded by the Wellcome Trust and the European Union.

Source: www.nature.com

I have to say – faced with a deadly disease, I think it is UNethical to have control / placebo arms of any trial.

Seriously: what about comparing ZMapp and immune serum, for example, with historical records of previous standard of care outcomes rather than directly?

I know if I were an Ebola patient, and I saw someone else getting the experimental therapy and I didn’t, that I would have a few things to say.

It’s not as if these therapies have not been tested in primates, after all – in fact, both the ChAd3 and MVA-based vaccines and ZMapp have been thoroughly tested in macaques, as have the other therapeutics, with no adverse events there.

I say if people say clearly that they want an experimental intervention, that they should get one: after all, the first use of immune serum was not done in a clinical trial, but rather as a last-ditch let’s-see-if-this-works intervention – yet its use does not seem controversial?

See on Scoop.itVirology News

Genetic Data Clarify Insect Evolution

13 November, 2014

Researchers create a phylogenetic tree of insects by comparing the sequences of 1,478 protein-coding genes among species.

Using an unprecedented quantity of genetic sequence information from insects, researchers have assembled a new phylogenetic tree showing when these invertebrates evolved and how they are related to each other. The tree suggests that insects evolved approximately 479 million years ago, around the time when plants colonized land, and that insects are most closely related to cave-dwelling crustaceans. The new study, published today (November 6) in Science, also confirms some previously suspected family groupings.

 

Source:

This bolsters my contention that it was the coevolution of insects and plants – because what else were insects going to eat? – that has driven much of viral evolution as well.

Because what else was there to infect? Basically, the only terrestrial organisms around some 450 million years ago were primitive green plants, insects, fungi and bacteria. So insects ate plants, fungi infected plants, viruses in insects entered plants and vice-versa; fungi got involved as well, and possibly even bacteria.

I have speculated on the possibilities here (http://www.mcb.uct.ac.za/tutorial/virorig.html), but it is pleasing to see new science that reinforces some of what I have been spreading about for some years now B-)

See on Scoop.itVirology and Bioinformatics from Virology.ca

Virology Africa 2015: consider yourselves notified!

7 November, 2014

Dear ViroBlogy and Virology News followers:

Anna-Lise Williamson and I plan to have another in our irregular series of “Virology Africa” conferences in November-December 2015, in Cape Town.

As previously, the conference will run over 3 days or so, possibly with associated workshops, and while the venue is not decided, we would like to base it at least partially in the Victoria & Alfred Waterfront.

We also intend to cover the whole spectrum of virology, from human through animal to plant; clinical aspects and biotechnology.

We intend to make it as cheap as possible so that students can come. We will also not be inviting a slate of international speakers, as we have found that we always get quite an impressive slate without having to fund them fully.

It is also the intention to have a Plant Molecular Farming workshop – concentrating on plant-made vaccines – concurrently with the conference, in order to leverage existing bilateral travel grants with international partners. If anyone else has such grants that could be similarly leveraged, it would be greatly appreciated.

See you in Cape Town in 2015!

Ed + Anna-Lise

The virus as art: Linda Stannard’s electron micrographs made colourful

3 November, 2014

Dr Linda Stannard was a virologist and electron micrsocopist of some repute, here at the University of Cape Town, when she retired some years back. She worked on a lot of interesting viruses, thanks to the diagnostic Virology lab at UCT’s Medical School as well as an eclectic mix of colleagues, and managed to create some stunning images of everything from TMV to poxviruses, herpesviruses, poliovirus, rotavirus, hepatitis B and adenoviruses.
IMG_0731.PNG
Then she retired – and took her image collection with her, to be recycled as imaginative colorised versions for commercial purposes.
So Anna-Lise Williamson commissioned her to beautify the rather sterile environs of the Institute of Infectious Disease and Molecular Medicine (IDM), with the results that you see below. Her corridor and offices now look rather nice!

IMG_0725.JPG

IMG_0728.JPG

IMG_0726.JPG

IMG_0727.JPG

IMG_0679.JPG

We are opening a competition to name each virus: winner to get the satisfaction of knowing they’re smart.

ZMapp in an HIV context

30 October, 2014

It was truly a pleasure to run into Kevin Whaley of Mapp BioPharmaceutical today, here at the HIVR4P inernational conferrence in Cape Town – so I made him come and have coffee with me and Anna-Lise, so we could chat about molecular farming.
Of course, it is the ZMapp plant-made therapeutic antibody that has set the molecular farming world alight, that was the main topic. Apparently Mapp is looking at a January 2015 date for a clinical trial in the affected West African countries, alongside the adenovirus and RSV-vectored vaccines. The plants for the production of the thousands of doses that will be needed – and recall, that’s a couple of grams per dose at 50 mg/kg – are already growing at Kentucky Bioprocessing in Louisville, so one imagines that a pile of work will be coming their way in the near future.
It’s also sobering to realise that even though plants ARE a more scalable and POTENTIALLY cheaper means of production of biologics, that therapeutic antibody production in particular, MAY be better suited right now to conventional technologies, such as CHO cell or even fungal production.
This is because large quantities of MAbs will be needed, and there is established capacity for production of hundreds of thousands of litres of cell culture right now, and yields and production costs have been driven right down to US$10 / gram for MAbs already, according to Kevin.
This partly answers a question I had during the HIVR4P sessions: if one is to use 20-50 mg/kg dosages for anti-HIV neutralising MAbs such as VRC01, how would it be remotely possible to make the amounts required for use in a developing country setting, where the patient can almost definitely NOT pay?
I still think there is a role for plants – but maybe this will be in the area of prophylactic use of MAbs, where much lower doses may be effective because there is not nearly as much virus to neutralise or inactivate.
And of course, Mapp is involved here too, with plant-made VRC01 in particular being incorporated into microbicides.
A great bunch of people, with really noble aims.

Rabies Vaccine Protects Nonhuman Primates against Deadly Ebola Virus

26 October, 2014

The research team is pursuing the inactivated rabies/Ebola vaccine for use in humans. The live vaccine is being developed for use in protecting wildlife at risk of Ebola virus infection in Africa, which could also serve to prevent transmission into the human population.

Source: www.niaid.nih.gov

I missed this one at the time – and it is an interesting piece of news.  Basically, the research team cloned the Ebola envelope glycoprotein GP1 into the extant rabies virus vaccine strain genome, and tested a live version, a replication-deficient version, and a killed whole virion version in macaques.

Their results are interesting enough – 100% protection against challenge for live, 50% for the other two – that they plan to follow up to see whether or not additional doses could improve protection in the two non-replicating versions, and to make a “multivalent filovirus vaccine”.

This can only be welcome news against the backdrop of the still-ongoing epidemic in West Africa – where two other vaccines (recombinant vesicular stomatitis and chimpanzee adenovirus) are probably going to be trialled next year. The rabies version at least is based on a very well characterised vaccine that already protects against an extremely deadly disease – it remains to be seen how well the other two do.

I forgot to mention that I found reference to this article on “The Zombie Research Society”‘s blog site: http://zombieresearchsociety.com/archives/25562. A very apt place if one considers the parallels that are already being drawn between Ebola and a “zombie virus”.

And because I like zombies B-)

See on Scoop.itVirology News

Resurrecting Smallpox? Easier Than You Think

17 October, 2014

The virus’s genome is already online. You just need the right lab.

Source: www.nytimes.com

Weeeeeellll…yes and no. Smallpox is a BIIIIG genome – not far off in size to the bacterial genome famously resynthesised by Craig Venter et al., a while ago.  This means it would be a huge undertaking, cost a LOT of money, and need sophisticated facilities to do it.

Not something your average cave-dwelling fanatic could do, then!

States could do it, however: a well-funded lab in even a country like North Korea could theoretically resynthesise a poxvirus – but why bother??  We have vaccines against smallpox right now; growing poxviruses and vaccinia virus in particular is a well-established biotechnology still.

SO I think this is an artificial concern, to be honest. 

See on Scoop.itVirology News

Packs of wild dogs spread Ebola after eating corpses!! Or…not, maybe?

13 October, 2014

Packs of wild dogs spread Ebola after eating corpses

The ever-evolving Ebola narrative is broaching into ludicrous territory, with reports now claiming that wild dogs are going around digging up the rotting remains of deceased victims and eating their flesh in the streets. Special Ebola graveyards, where the dead are being buried in haste and at shallow depths, are reportedly feasting grounds for these dogs, which officials say are capable of spreading the disease to humans.

The Daily Mail says Liberian villagers first came across the dogs while going about their daily routines. Right in the middle of busy streets, they said, hungry hounds were allegedly seen ripping through rotting corpses, to the shock of onlookers. After determining the source of the bodies, it was revealed that shallow graves were to blame.

Source: www.naturalnews.com

Stephen Korsman of the Division of Medical Virology at UCT just alerted me to this article, in some distress because they had misquoted him and used his comments out of context.  This is a rather wild, sensationalist and highly inaccurate piece from a fringe web site that seems to have blocked me from commenting, because of previous criticism.  So, I’ll just do it here.

They comment: "Logically speaking, it makes little sense that asymptomatic dogs are possible Ebola carriers while asymptomatic humans are not. There exists no credible science to substantiate this apparent inconsistency beyond the baseless claims made by government health officials."

Utter garbage: bats carry Nipah virus, SARS-CoV, Ebola, Marburg AND rabies essentially asymptomatically – and can transmit ALL of them to other mammals. So too can deer mice transmit Sin Nombre hantavirus in the south-western USA without showing symptoms.  Rodents transmit Lassa fever virus in West Africa every year, again without being symptomatic.  Mice can transmit various South American haemorrhagic fever viruses without obviously being sick. I wish they would get their facts straight: this is is very easily checked!

See on Scoop.itVirology News

Norway to get world’s last dose of ZMapp – update

8 October, 2014

The Norwegian woman, infected by the Ebola in Sierra Leone and currently receiving treatment in Oslo, will get the last dose of the virus treatment medicine ZMapp

Source: m.thelocal.no

…and yet again, the emphasis is on how slow it is to make it – when the whole point of biofarming and transient expression is that it is supposed to be QUICK to make things, and easy to scale up production!!

What is the problem here?  KBP has facilities – or says it does – for large-scale production of proteins via transient expression in N benthamiana via rTMV or even BeYDV-based vectors. SO why has it been so difficult to make more ZMapp??

Why, in fact, are we told via other reports that the US government is considering getting Caliber to make it, or even to make the cocktail in CHO cells, because of capacity, when KBP has the equipment?

It can’t be supply of plants, surely: if they’d planted out a big greenhouse or two of N benth the moment ZMapp hit the news, they’d have enough to make many grams of ZMapp right now – given that it takes just a few days of incubation post-infiltraiton to make the protein.

Surely it’s not a protein purification thing – because THAT’S pretty quick too, once the plants have been mushed.

So what IS the bottleneck? cGMP requirement? Lack of certified protocols / equipment? Can someone tell us??  Otherwise, a posterchild for biofarming will end up being made by good old stainless steel cell culture technology, and our favourite way of doing things will have been found to be wanting.

NOTE ADDED 10th October:

Never let it be said I was unwilling to get schooled by a former colleague…Kenneth Palmer just told me what the problem is:

“You may not be aware that the human dose of Zmapp is 12 grams per patient, 3 infusions of 4 grams each.  Check the dose in recent Nature paper. If yield of one antibody is 100 mg per kg and you have to produce three antibodies for Zmapp… If you do the arithmetic you will see why the process is “slow””.

So…. Doing just that, you end up with 30 kg N benthamiana per gm of ZMapp as a best-case yield – meaning 360 kg PER PATIENT.

That’s a LOT of N benth – and tooling up for that sort of plant production takes time. Thanks, Kenneth!

I would be VERY interested in a cost breakdown of ZMapp vs CHO cell-produced MAbs – because producing at that sort of scale MUST be prohibitively expensive in stainless steel?

 

See on Scoop.itPlant Molecular Farming


Follow

Get every new post delivered to your Inbox.

Join 619 other followers